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Stay-Move Tree for Summarizing Spatiotemporal Trajectories 

Eun-Kyeong Kim1 

1 University Research Priority Program (URPP) "Dynamics of Healthy Aging" & Department of Geogra-
phy, University of Zurich, Zürich, Switzerland 

{eun-kyeong.kim}@geo.uzh.ch 

Abstract. Summarizing spatiotemporal trajectories of a large number of individual objects 
or events provides insight into collective patterns of phenomena. A well-defined data 
model can serve as a vehicle for classifying and analyzing data sets efficiently. This paper 
proposes the Stay-Move tree (SM tree) to represent frequency distributions for types of 
trajectories by introducing concepts of stay and move. The proposed tree model was ap-
plied to analyzing the Korean Household Travel Survey data. The preliminary results show 
that the proposed SM trees can potentially be employed to compare/classify spatiotemporal 
trajectories of different groups (e.g., demographic groups or species of animals). The meth-
odology can potentially be useful to summarize big trajectory data observed from both 
human and natural phenomena. 

Keywords: spatiotemporal trajectory, spatiotemporal data model, movement analysis. 

1 Introduction 

The rise of new sensor and communication technologies increasingly produces massive trajec-
tory datasets and demands methodologies for analyzing big spatiotemporal trajectory data. Sum-
marizing spatiotemporal trajectories can provide insight into collective patterns of individual 
moving objects or events. Despite of efforts made for summarizing spatiotemporal trajectories 
[1-6], there is still a scarcity of representation models for huge trajectory data.  

A well-defined data model can facilitate classifying and analyzing data sets efficiently. Mod-
eling movement patterns of moving objects has been carried out by [3-6]. Dodge et al. (2008) 
[3] developed a conceptual framework for moving objects’ behavior and classification of move-
ment patterns. Hornsby and Li (2009) [4] introduced a typology for spatiotemporal trajectories 
of a single object. Schneider et al. (2013) [5] characterized daily mobility patterns by directed 
networks of locations. Inoue and Tsukahara (2016) [6] proposed a hierarchical classification 
method for categorizing stays in movement trajectories by the frequency of stays. However, 
many existing studies do not consider a temporal dimension [5-6] or focus on obtaining repre-
sentative paths of clustered trajectories [1-3]. 

To summarize large trajectory datasets in a concise but comprehensive way, this study de-
velops a methodology, called a Stay-Move (SM) tree, to categorize spatiotemporal trajectories 
into a simplified trajectory type, represent the (relative) frequency of trajectories of each trajec-
tory type, and compare trajectories of different groups. This study proposes a Stay-Move (SM) 
model as a data model for spatiotemporal trajectories, which is described in Section 2. Then, the 
SM tree is proposed to arrange all types of trajectories that consist of stay and move elements 
and represent a (relative) frequency distribution of types of trajectories of an entire dataset (Fig. 
2), which is illustrated in Section 3. The preliminary analysis on Korea Household Travel Sur-
vey data collected in 2006 in the Seoul Metropolitan area shows that the proposed methodology 
allows comparing collective patterns of trajectories of different groups.  

2 Stay-Move Model 

This study employs a Stay-Move (SM) model proposed in author’s previous work [7], a typology 
of spatiotemporal trajectories. To simplify spatiotemporal trajectories, this model adopts the 
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two concepts of stay, defined as a behavior of staying at a place for a significant time, and move, 
defined as a behavior of moving from one place to another by a significant distance because 
they are basic elements of movements of objects and events (Fig. 1b). This model represents a 
trajectory as an ordered set of stays and moves. The order of places is determined by the order 
of visits, regardless of absolute locations of each place (Fig. 1). For example, if one stays at 
home from the beginning of a day, their home becomes the first place. If they move to places 
where they already visited, the model takes the previously labeled order of places, which is 
regressive (Fig. 1b). If they move to a new place, the order of the place increases by one, which 
is non-regressive (Fig. 1c). A trajectory type is represented as a sequence of numbers where the 
numbers denote identical stays in order of appearance for the observed time period. For instance, 
a travel of ‘home, work, home’ in a day is represented as ‘121’, as is ‘work, gym, work.’  

 
Fig. 1. Concepts of the Stay-Move model. (a) A trajectory in space and time, (b) A regressive type of 

SM model, and (c) A non-regressive type of SM model. 

The SM model is useful to simplify complicated spatiotemporal trajectories. Although this 
model can be applied to any trajectory data, one needs to be cautious in applying the SM model 
to noisy data. Datasets containing no descriptions (e.g., home, work, stop-over) for each loca-
tion, e.g., GPS data, need to be preprocessed. A set of location points that constitutes a daily 
trajectory needs to be discretized into move(s) and stay(s) according to an analyst’s definition 
of moves and stays. If the definitions allow capturing stays and moves at a micro scale of space 
and time, the number of segments of a SM model may increase to the excessive degree, which 
is not ideal to summarize trajectory data concisely. 

3 Stay-Move Tree 

This study proposes a Stay-Move (SM) tree to organize all types of trajectories in an SM model 
by a tree structure. As seen in Fig. 2, each node of a tree represents a specific trajectory type 
constructed by the SM model. The root node at the top of the tree represents a trajectory without 
any moves for a period of time (e.g., a day), and its child node represents a trajectory type with 
one more move, extending from its parent node (Fig. 2). Each parent node branches into its 
child nodes along with a possible place set that includes previously visited places or a new place. 
Trajectory types with the same number of moves are located at the same depth of a tree. The 
height of a tree is determined by the maximum number of moves of a single trajectory in the 
data. 

Here is a more formalized description. Let a list of locations where the n-th object once stayed 
until the m-th move be Locm[On] = {location[i] | i ≤ m}, and let a sequence of ordinal numbers 
that substitutes elements of Locm[On] by order of appearance of locations be LocOrderm[On] = 
{order[i] | i ≤ m}. Then, the combination of elements belonging to LocOrderm[On] can represent 
each type of trajectory as illustrated in Fig. 2. In addition, a possible location set can be defined 
as PossibleLoc m[On] = [Locm[On] – {location[m]}] È {location[m+1]}. 
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Due to its predefined structure embracing all types of trajectories, the SM tree enables to 
represent the (relative) frequency distribution of trajectory type (Fig. 2). A (relative) frequency 
distribution over an SM tree gives insights into the nature of movements including the level of 
activities and the diversity of visited places. Based on a (relative) frequency distribution, SM 
trees can be used to compare different sets of trajectories grouped by demographic characteris-
tics (e.g., age group), regions, time periods (e.g., Monday vs. Saturday), or animal species. 

4 Classification of Stay-Move Trees 

With Stay-Move trees, it is possible to investigate how similar different groups of trajectories 
are by measuring the similarity between a pair of SM trees constructed from a pair of groups of 
trajectories. A similarity function measuring the degree of similarity between two SM trees can 
be defined as follows:  

100 - ∑ ∑ α#$%𝑃#$[𝑇𝑟𝑒𝑒+] −	𝑃#$[𝑇𝑟𝑒𝑒/]%0123
$4+

23567
#4+  

α#$ = weights	for	𝑗th	node	at	𝑖th	depth	(default = 1) 
𝑃#$ = the	relative	frequency	(i. e. , percentage)	of	𝑗th	node	at	𝑖th	depth 

Similarity functions can be defined based on either the frequency or the relative frequency 
(i.e., percentage), but the similarity function based on the percentage is better to compare dif-
ferent groups of trajectories because it is normalized by the total number of trajectories.  

 
Fig. 2. The frequency distribution (𝑓#$) and the relative frequency distribution (𝑃#$)	of daily trajectory 

type of a Stay-Move tree for two groups of people (A: age of 20-29; B: age of 50-59). Nodes beyond the 
depth of 4 are not represented in this figure for both trees, A and B, due to the limited space.   
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5 Preliminary Result  

To show the utility of the proposed methodology, I conducted preliminary analysis on Korea 
Household Travel Survey data collected in 2006 in the Seoul Metropolitan area. The data con-
tains about 100k daily trajectories and about 300k trips. Each trip has attributes including ad-
ministrative area codes, time, and place type of departure and arrival as well as mode of trans-
portation. To keep SM trees in a manageable size, this analysis does not include stop-over places 
but only destination places.  

The frequency distributions and relative frequency (percentage) distributions of trajectory 
types of SM trees were constructed for age groups in the Seoul Metropolitan area (Fig. 2), and 
then, the similarity of each pair of SM trees was calculated (Table 1). The similarity matrix 
shown in Table 1 reveals that age groups of 10-19 and 20-29 have different patterns in relative 
frequency (percentage) distributions of trajectory types from the rest of age groups. A close look 
into the percentage of each type enabled a better understanding of those patterns. Age groups 
of 10-19 and 20-29 show the higher percentage of two types of trajectories: ‘12131’ (e.g., home–
school–home–extracurricular activities–home) and ‘1231’ (e.g., home–school–extracurricular 
activities–home) than other age groups. While age groups of 40-69 have similar relative fre-
quency distributions each other, the age group of 30-39 are different from them. 

In the future, I plan to extend the data analysis to other big trajectory data including large 
GPS data. 

Table 1. Similarity of relative frequency (percentage) distributions of different age groups 
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Detection of Unsigned Ephemeral Road Incidents
by Visual Cues
Alex Levering1, Kourosh Khoshelham2, Devis Tuia1, and Martin
Tomko2

1 Laboratory of Geo-information Science and Remote Sensing, Wageningen
University
alex.levering|devis.tuia@wur.nl

2 Department of Infrastructure Engineering, University of Melbourne, Australia
k.khoshelham|tomkom@unimelb.edu.au

1 Introduction

Traffic is a highly dynamic environment and ephemeral changes to the on-road conditions
impact it continuously. Research in Autonomous Vehicles (AVs) is currently highly focused
on dynamic changes, due to the high safety requirements [12]. AVs must be able to detect
and respond appropriately to incidents. In a connected traffic data ecosystem [3], AVs will
further share traffic information about the state of the road network.

Our research addresses the detection of ephemeral incidents affecting road networks by
first-on-scene vehicles. An incident is "... an event, which directly or indirectly can result in
considerable reductions or interruptions in the serviceability of a link/route/road network."
[2]. For any unsigned incident (i.e. not yet signposted or tagged incidents such as a recently
detected fire), the sensors of the vehicle that is first on the scene should detect and assess the
danger to the traffic and report it to the connected traffic ecosystem. Efforts have been made
to recognize signed changes to the environment (i.e., pedestrian and traffic signs) [6, 14], as
well as the avoidance of dynamic scenarios (e.g., pedestrians or animals stepping into the
traffic [9, 10, 11]). Yet, there has been no research covering the systematic classification and
autonomous detection of various types of incidents by first-on-scene vehicles.

In this paper we address the problem of identifying and classifying unsigned ephemeral
on-road incidents from street-level imagery, such as those acquired by dashcams. We present
the approach to the creation of an extensive, labeled street-level image library that supports
the detection and classification of on-road incidents using a deep convolutional neural network
(CNN). The full results of the experiments will be reported at the workshop.

2 Methodology

Image classification using CNNs has had enormous success [1]. Pre-trained CNNs can
now be used for fast image classification from camera frames onboard a vehicle. CNNs
require vast amounts of labeled data to be trained. We describe the systematic approach
to the collection of a detailed and comprehensive image dataset of on-road incidents, from
a taxonomy of incidents through collection from Web sources, incl. data with a partial
geographical stratification.

2.1 Taxonomy of Incidents
To label the incident images used by the CNN model, we propose an approach grounded in
a systematic taxonomy of incident types, providing a semantic structure for an adaptable
set of incident labels (Figure 1). Such adaptability is desirable to for alterations required to

© Alex Levering, Kourosh Khoshelham, Devis Tuia and Martin Tomko;
licensed under Creative Commons License CC-BY

Spatial big data and machine learning in GIScience, Workshop at GIScience 2018.
Editors: Martin Raubal, Shaowen Wang, Mengyu Guo, David Jonietz, Peter Kiefer;

Leibniz International Proceedings in Informatics
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Detection of Unsigned Ephemeral Road Incidents by Visual Cues

reflect changing local deployments (i.e, wildlife, meteorological events). We only consider
physical incidents, as non-physical incidents cannot be identified in imagery (e.g., GPS or
traffic information system failure). At the top level, we distinguish between signed physical
incidents (not tackled here) and unsigned physical incidents. We further distinguish between
man-made and natural physical incidents to distinguish the objects and covers altering
the status of the road. In total, we consider eight incidents in this initial study: crashes
(MAN-O-1), road collapse (MAN-C-1), animal on road (NAT-O-1), treefall (NAT-O-2), snow
on road (NAT-C-1), flooding (NAT-C-2), landslides (NAT-C-3), and fires (NAT-C-4).

Figure 1 Taxonomy of incidents and their semantic groupings. Each lowest-level indicator (e.g.
MAN-O-1) refers to an incident under consideration.

2.2 Data
We collect RGB images captured by image sensors. We opted for optical recognition of
incidents as cameras record information that cannot be extracted from LIDAR point clouds
(e.g., smoke, fire), and because of the abundance of labeled images and datasets. RGB
images are also readily accessible through online search engines. We collect and clean images
from four sources: Google Custom Search API 1, Bing Image Search API v7 2, the Flickr
API 3, and the Geograph UK project 4. We construct queries by grouping synonyms of
each topic, such as ’snow on road’ and ’street blizzard’. We retain the top-100 images that
match queries crafted for each category of taxonomy, as the relevance and quality of images
drops noticeably beyond this number. In a subsequent manual cleaning process images are
restricted to relevant on-road incidents. We only retain images that have a viewport height
of on-road vehicles, comparable to vehicle-mounted cameras. Lastly, we retain only imagery
that is spatially relevant, i.e., every image relates to a possible incident on the road network.
As an example, an animal in itself may not be an incident. It only becomes an incident when
it is in a certain spatial context, in this case close to or on the road. The detection of such
spatial relationships in image classifiers is currently in its infancy [7], and few datasets are
built with this intrinsic property in mind – a shortcoming addressed in our collection. In

1 https://developers.google.com/custom-search/json-api/v1/overview
2 https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-images-api-v7-reference
3 https://www.flickr.com/services/api/
4 https://www.geograph.org.uk/
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total, we have collected 12.500 images spread across all incident classes. The set contains the
following amount of images per class: Animal on road: 1321, Collapse: 491, Crash: 1478,
Fire: 865, Flooding: 2155, Landslide: 825, Snow: 4744, Treefall: 751. The dataset and the
query strategy is elaborated upon in more detail during the workshop.

An additional dataset of true-negative images to be used during classification will be
gathered from the same sources and from image frames from benchmark datasets such as
CityScapes [4]. In total, we aim for a dataset of 40,000 true-negative images to capture
a great variety of environments and regular driving conditions. We maintain a 70:20:10
training, validation, and testing split respectively for both true-positive and true-negative
subsets.

2.3 CNN Classification

The incident recognition is implemented using CNNs in the PyTorch environment in a
multiclass classification task performed on a pre-trained ResNet-34 model [8]. We chose the
ResNet architecture to leverage skip connections to reduce overfitting, as well as its state-
of-the-art performance and ease of training. We use a model pre-trained on the ImageNet
dataset [5] which is then re-trained across all layers. We don’t consider multi-label cases
(e.g. a fire and a car crash visible in the same image). During training we track the loss
and classification accuracy, retaining the model with the lowest validation loss as the best
model. The final overall accuracy is given by the F1-score and the overall accuracy. A
qualitative analysis of visual triggers will be supplied through the use of Gradient-weighted
Class Activation Mapping [13], which will help to highlight the model’s visual cues for each
class. Lastly, we also report the accuracy of an experiment using a geographical stratification
for the classes Animal on road, flooding, and Snow, which contain geotagged images from the
Geograph dataset.

3 Discussion and Conclusions

Matches for images tagged with incident – a somewhat jargon term for events on roads – are
rare. Our searches therefore combine terms that can either be identified in the images, or
in the text nearby. The applied restrictions limit the amount of relevant images, leading to
problems with sourcing examples for certain classes. This may noticeably limit the amount of
possible representations of incidents covered by the final dataset. Currently, we are training
our CNN model, varying all relevant hyperparameters until satisfactory convergence. The
final model performance will be reported at the workshop using the F1-score and the top-1
accuracy. Lastly, we will report the geographically stratified accuracy of the three classes
(animals, flooding, snow) present in the Geograph dataset.

We anticipate problems due to classification correlation for themes present in certain
images (e.g., landslides may correlate with rocky cliff-faces). Results for all classes may thus
not be equally robust. Possible continuations of this research may focus on more efficient use
of image samples from sparsely represented classes to increase their representational power.
We envisage to publish the subset of images licensable under a CC-by license along with the
pre-trained network. This will allow for further experimentation and improvements on the
benchmark for this task that has so far not been broadly covered in the literature and where
significant progress is possible.
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Abstract
Map inference techniques aim at using GPS trajectories collected from a fleet of vehicles, to infer
geographic information and enrich road map databases. In this paper, we investigate whether a
Convolutional Neural Network can detect traffic signals on a raster map of features computed
from a large dataset of GPS traces. Experimentation revealed that our model is able to capture
traffic signal pattern signature on this very specific case of unnatural input images. Performance
indices are encouraging but need to be improved through a more refined tuning of the workflow.

Keywords: Map Inference, Machine Learning, GPS Traces, Traffic Signal, Deep Learning

1 Introduction

Along with the proliferation of electronic devices equipped with a Global Positioning System
(GPS) receiver large datasets of daily trajectories are collected by specialized fleets of vehicles
(such as taxis, bus, delivery trucks...) or more recently, through collaborative driving mobile
applications. When available, they constitute a valuable source of information to infer or enrich
road map databases. With traditional cartography techniques, roads are manually digitized
on orthorectified aerial images. Despite the fact that automatic or semi-automatic detection
from images is getting increasingly efficient [8], road maps update speed is still limited by the
(generally consequent) period separating two successive image acquisitions. Indeed aerial image
campaigns are typically conducted every several years, which is to be put in perspective with
the fast evolution of cities [2]. Furthermore, the process often needs to be completed with field
surveys to acquire features that cannot be captured in the images.

Conversely, by the means of GPS traces coupled with efficient mining algorithms, road maps
can be inexpensively generated from scratch and updated on a daily basis. This observation gave
birth to a new field of research, known as map inference which aims at completing or replacing
traditional survey techniques with floating car data [1]. Though it was initially restricted to the
geometry of roads, refining topology, inferring attributes and now detecting road infrastructure
(traffic signs, traffic calming devices...) are becoming achievable [5, 7]. Detailed road maps are
of utmost importance for traffic flow simulation and subsequent urban planing, for autonomous
vehicles or merely for computing accurate routing time estimations. On the other hand, super-
vised statistical learning techniques [4] have been successful in a wide range of applications, from
signal and image classification and segmentation to medical diagnosis. In our application, they
guarantee the genericity of the approach (provided that labeled instances are available, the pro-
cess may be customized to infer other types of information, in different environments without
having to design a new algorithm ex nihilo). Considering the large number of GPS traces that are
typically recorded every day, this raises two questions: firstly how to design accurate algorithms
to extract the relevant information among such massive amount of data, and secondly how to
implement them efficiently.

© Spatial big data and machine learning in GIScience, Workshop at GIScience 2018, Melbourne,
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           CNN for traffic signals inference on GPS traces

In this paper, we propose to train a convolutional neural network (CNN) to detect stop lines
associated to traffic signals on a rasterized map of trajectories. The remaining of the paper
is organized as follows: the workflow of our application is presented in the next section, then
section 3 provides implementation details and preliminary results obtained on a real-world dataset.
Eventually, section 4 concludes the paper.

2 Workflow

The key idea of our approach is to reduce the full dataset of GPS traces into a regular grid
of aggregated features, which is much more tractable from the computational view point (the
amount of information to process grows only with the spatial extent of the concerned area and
no longer with the GPS dataset size). The overall workflow is depicted on figure 1 hereafter.

GPS traces
n channels of features neural network

probability map

inference

ground truth comparison detection

Figure 1 Overall workflow

The first step allocates segments of GPS trajectories on a regular grid. In each cell, n

aggregated features (such as mean and standard deviation of speeds, number of traces...) are
computed to produce a set of raster maps, which may be seen as a single image with n channels.
This operation may be performed efficiently through parallelization techniques and thus is scalable
with the daily number of GPS traces recorded. The resulting image is input into a CNN, trained
with labeled instances to detect traffic signals. CNN is an extension of artificial neural networks,
where each layer of neurons performs a series of convolutions on the output of the previous
layer, decreasing the number of parameters in the model while keeping the ability to extract very
expressive features from spatially structured data [3, 4]. This makes CNN perfectly adapted to
image-based learning. In this work, we investigate CNN capabilities in the context of recognition
on images rasterized from GPS traces. The output of the network is a probability map, i.e. pixel
values are proportional to the traffic signal presence probability. Note that here we compute a
per-pixel estimation often referred to as dense learning in the literature. Local maxima of the
output map are eventually extracted, and compared to the ground truth for validation.

3 Implementation and preliminary results

The experimental data represent a set of 11862 GPS traces, located in Mitaka city (16 km2),
suburbs of Tokyo (Japan). They were provided by NAVITIME JAPAN, a private company
developing navigation technologies and providing various kinds of web application services such
as route navigation, travel guidance, and other useful information services for moving people.
The municipality has 669 traffic signals, reported by photo interpretation.

10
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Traces containing fewer than 10 points (approximately 1% of all traces), were rejected. Sub-
sequently, for each trace, a set of indices were computed from individual points: speed, acceler-
ation, bearing, whether the point is a stop (i.e. if its acceleration is positive and the preceding
GPS record has a zero speed or is decelerating). The bearing is used to distinguish the flow
direction on two-way streets, and takes discrete values in the 8 directional sectors. A 5 meter-
resolution base grid is made. The size of 5 m can reliably locate traffic signals. In each grid cell,
computed indices on points are aggregated: mean and standard deviation of speeds, means of
accelerations, number of stop points and most frequent orientation. These 5 features will provide
5 raster images. Feature values are converted on a 8-bit grayscale. To differentiate the value 0
from the absence of data, the minimum threshold taken by the values is 16 (e.g. the mean of
speeds is distributed between 16 and 255). The ground truth is a binary image: cells containing
a traffic signal take the value 255 (white) and remaining cells are set to 0 (black).

Feature maps and ground truth images are cut by a sliding-window into small 60×60-pixel
output images, (corresponding to 300 × 300 m on the field). The overlap between images is equal
to 20 pixels, hence the traffic signals have different positions in the image, so the spatial context
changes. This artificial increase in the number of training instances may help the model to deal
with a large variety of traffic signal configurations.

We validated the model with cross-validation on 8 geographical zones, each containing ap-
proximately 90 traffic signals and 200 windows. Areas have distinguishing morphologies like
downtown, residential district, motorway environment, etc. (e.g. the zone 5 contains many
unsignalized intersections).

Figure 2 Example of 2 features and the result for one image

Our neural network architecture is inspired from U-Net [6]. Since traffic signals are overwhelm-
ingly under-represented in comparison with background, we used, as proposed in the U-NET
framework, a weighted loss function, in order to penalize false negatives. The weight, correspond-
ing to a rough average estimate of 3 traffic signals per image, was set to 1:1200 (3/60×60). It is
important to note that, to produce a probability map with the same resolution as the input im-
age, in the architecture pooling operators were replaced by upsampling operators. The network
model has been implemented using Keras1, a Python library that overloads TensorFlow1.

Since a numerical validation of the model would require to have an efficient method to extract

1 Keras: https://keras.io/ TensorFlow: https://www.tensorflow.org/
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           CNN for traffic signals inference on GPS traces

traffic signals from probability map (which has to be addressed in future research), numerical
validation is not possible yet. However a surrogate manual validation provided the following
results: the recall rate stands at 75% with a precision of 60% (65% F-measure). The experiments
were performed using a personal computer with 3.30 GHz CPU, 4-core processor and 8 GB of
memory. The training step took 70 minutes for 54900 images for a batch size of 100 instances
and 130 epochs. The validation step took 1.136 seconds for testing 60 images. This benchmark
suggests that the processing time required to cover the entire Tokyo area (2190 km2) is below 7
minutes, which highlights the scalability of our approach.

Though not satisfying yet for a fully automatic detection, these preliminary results are en-
couraging. We believe that the GPS dataset is not sufficiently large to ensure the convergence of
the results. Particularly, a significant number of intersections are only covered by a few traces.
Besides, with a more extensive dataset, we may calibrate the model more thoroughly without
falling into the trap of overfitting. Results may be improved also by adding new features (conges-
tion, road type, etc.). It would be interesting as well to input the aerial image in addition into
the network to investigate whether this can further help the detection and localization process.

4 Conclusion

We presented a method based on CNN to detect traffic signals on a map of aggregated features
computed from a dataset of GPS traces. Preliminary results demonstrated the potential and the
scalability of the approach. The extraction of most likely locations from the probability map is
an important aspect that needs to be addressed in future works. Let us note that the validation
is as well problematic since it requires to measure the tradeoff between detection performance
(recall and precision) and geometric accuracy. An important perspective of improvement lies
in extending this approach to detect other types of infrastructure elements (such as yield signs,
pedestrian crossings, speed bumps...) including more ephemeral events (roadworks zones...).

Acknowledgements. We would like to thank Professor Xuan Song, for his precious advice.
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Abstract
Changes in the mobility landscape, such as the emergence of shared or autonomous mobility,
or the increasing use of mobility as a service, require an adaption of information technologies to
satisfy travelers’ demands. For example, the deployment of autonomous taxis will necessitate sys-
tems that automatically match people with available cars. Combined with the enormous increase
in available data about transport systems and the people using them, mobility providers have to
think about how to build flexible and scalable systems that satisfy their customers’ information
demands. In our work we explore how streaming frameworks (as part of Big Data infrastruc-
tures) can be used to process mobility data, and how the spatiality of the underlying problem
can be used to improve the performance of the resulting systems. We currently experiment with
different approaches on how to build a mobility data stream processing pipeline, and evaluate
the different approaches against each other in terms of scalability, ease of use, and possiblity to
integrate with data from other mobility providers.

1 Introduction

Mobility and transport must and already started to undergo large transformations due to sus-
tainability goals set by many countries, new technological advances and the saturation of existing
transport systems (3). Technological advances are not restricted to fields such as electric or au-
tonomous cars, but also cover an increasing miniaturization of sensors and computing technology,
which leads to enormous amounts of data about transport systems and the people using them.
Several trends, including the emergence of shared and autonomous mobility, lead to new require-
ments for information technology (IT) to support travelers (6). In this work we look at taxis,
which are often regarded as prime candidates for replacement with autonomous cars in the near
future and will require automated IT to match people with taxis.

The use of Big Data streaming frameworks makes it possible to build systems that automat-
ically scale (depending on the problem size), and makes them more easily deployable compared
to having to build a distributed mobility processing framework from scratch. We currently ex-
periment with different architectures for processing taxi data and evaluate them in terms of
scalability, ease of use, and their suitability for integration with data from external providers
(e.g., environmental data). In the work presented here, we are focusing on finding the nearest
taxis for any client request (essentially solving a nearest neighbor problem), and discuss several
important additions to the streaming system required for future autonomous taxi matching.

In a geographical context, Big Data frameworks were recently used to process location-based
social network data, street network data and mobility and movement trajectories (e.g., (5)).
There is only little public research on using streaming (in contrast to “plain” Big Data) frame-
works to process geographical data: For example, Domoney et al. (2) look at the processing
of sensor data streams, while Maarala et al. (4) use streaming to process and analyze traffic
data. We argue that there is a lack of best practices when employing streaming frameworks to
process spatio-temporal data, in particular with regards to traffic and mobility, an aspect that
will be increasingly important for future forms of mobility. With this work, we show how spatial
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Using Stream Processing to Find Suitable Rides

indexing structures can be used for mobility data, and hope to initiate a discussion on the crucial
components within a streaming pipeline for matching autonomous taxis.

The two best-known approaches used by Big Data streaming frameworks are microbatching
and true continuous streaming (7). In microbatching, data is aggregated into smaller batches
(usually of several hundred milliseconds) which are then sequentially processed. As taxi matching
only has to be near real-time and vehicle and client data have to be joined, we are using Apache
Spark1, which adopted a microbatching approach in order to reuse its Hadoop-based structures
for streaming. In addition to supporting well-known operations of Big Data systems (such as
map, reduce, join, etc., which are automatically distributed among worker nodes) Spark Streaming
offers functionality for stateful streams (e.g., to continuously update the position of a taxi) and
checkpointing (for fault recovery), both essential to process mobility data in a realistic setting.

2 Method

We present two approaches how to match a stream of taxi data with incoming and pending
transport requests (i.e., to find the closest k taxis to an incoming client request). Both the taxi
data and client request streams consist of a tunable number of updates per second, sent as JSON-
encoded packets over a WebSocket connection. Each packet of the incoming taxi data stream
contains the id of the taxi it refers to (one out of several thousand), its current location (longitude,
latitude), the number of people currently traveling in it, and the next destination (if known). On
the other hand, the stream of incoming client requests consists of the origin (longitude, latitude)
and the destination of a desired journey. It is beneficial to maintain a state of the locations, as
otherwise only the information within a single batch would be available. Technically, it would
suffice to only either maintain the state for the taxis or the client requests, but this would
inevitably lead to longer delays before finding the optimal match (e.g., if solely taxi locations
were stateful, they could only be matched with client requests whenever those appear in the
stream, and not when at a later point in time updated taxi locations would lead to a better
match).

Figure 1 shows two different streaming pipelines evaluated as part of this research. Distributed
processing of big data can easily be done if the individual records resp. the computations per-
formed on them are independent. An evident approach to compute the k nearest taxis for a
number of client requests is to simply combine all taxis with all requests, compute the distance
between each pair, sort them according to this distance, and take the top k. Figure 1a shows
this approach, which does not use any spatiality inherent to the problem. Optimally, in order to
compute the top-k matches, one would not have to compute the distances between all taxis and
client requests. Spatial indexing structures, such as R-trees (1), can help reducing the number
of computations that need to be performed. In the approach shown in Figure 1b, we build an
index for each batch of taxi data, and use these indexes to reduce the number of computations
performed on each worker (the workers get a subset of client requests for which they have to find
the closest taxis).

3 Data and Experiment

We are currently performing experiments based on real taxi data from New York City2. Because
this dataset only contains dropoff and pickup coordinates, we used the Open Source Routing

1 See spark.apache.org for details.
2 The NYC taxi data is publically available starting from 2009 and can be downloaded from
www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
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(a) The cartesian pipeline: Incoming taxi updates and client requests are processed in batches of
several hundred milliseconds. The cartesian product is computed for all taxis and client requests in a
(stateful) batch. These tuples are distributed on an adjustable number of workers which compute the
distances between taxis and clients. Each worker then takes the top-k pairs, and uses the streaming
framework to perform a reduction step, where ultimately the top-k taxis for each request remain.

(b) The separated KNN pipeline: On the master (resp. in the driver program), a spatial index is
built for the taxis. This index is then sent to the workers, which use it to minimize the number of
computations needed per client request.

Figure 1 The two different mobility stream processing pipelines analyzed within this work.

Machine (OSRM)3 to compute exact trajectories. As the dataset does not contain any indication
about which taxi served a particular request, and what taxis did between two served clients, we
used a heuristical approach to create a daily driving schedule (without gaps) for each taxi. A
streaming application developed in Go4 constantly reads the taxi schedules and outputs packets
with an adjustable frequency to WebSocket streams. The streaming application that tests the
different pipelines is thus able to receive taxi and client request streams in a controlled fashion
(with respect to throughput, number of taxis and clients, time window, etc.).

Figure 2 shows the influence of the taxi and client request throughputs on the time that is
required to process a single batch (normalized by the number of taxis; the batch size is 500 ms).
On the one hand, the processing time decreases with an increasing number of taxi updates per
second as the overhead of the streaming framework is spread across more taxi updates. On the
other hand, an increase in client requests leads to an increase in processing time, as proportionally
more computations have to be performed. The effects of an increase of the client requests are
less prominent for the separated KNN pipeline, as the spatial index reduces the computational
complexity at the expense of having to build it for every batch.

4 Discussion and Future Work

The first results presented in this work show that it is possible and likely beneficial to use
a streaming framework for finding potential matches between taxis and the travelers requesting
them. However, it is still unclear what kind of pipeline architecture will perform well, in particular
when considering the integration of external services and data providers. Our findings suggest
using the spatiality inherent in the problem of finding the nearest taxis can greatly reduce the
computational efforts, leading to a speedup in the order of one magnitude in our case.

The use of realistic taxi data in combination with a tuneable streaming source allowed us to
quickly test various streaming pipelines in a reproducible setting. As next step we planned a

3 The Open Source Routing Machine (OSRM) can be downloaded from project-osrm.org.
4 Go is a systems programming language developed by Google, see golang.org.
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Figure 2 Normalized processing times of the two pipelines presented in Figure 1 (cartesian
pipeline on the left, separated KNN on the right).

more in-depth examination of the scalability of various architectures, e.g., by varying the number
of workers in the cluster, by changing the partitioning (of work resp. data), and by employing a
reusable spatial index that can be updated with new positions in every batch. In addition, we
here omitted the integration of other services (e.g., OSRM for exact routing). Integrating such a
service is particularly problematic as it can lead to enormous (and unpredictable) delays which
in turn lead to instabilities in the streaming framework. Finally, in line with the goal of enabling
people to share their taxis, we work on an addition to the streaming pipeline that considers
potentially occupied taxis and lets taxis pick up multiple passengers. Especially the latter part
requires a more complex approach, as solely solving the nearest neighbor problem often will not
lead to a globally optimal solution.
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1 Introduction

Various movement patterns have been discovered in trajectories, which are valuable in
studying the contextual behavior of tracked objects [15]. Most of the previous studies have
been concentrated on detecting of specific patterns in trajectories, such as flock, leadership
and convergence [9] or sequential patterns [14]. In practice, movement patterns can be much
more diverse and complex, e.g., clockwise, and zigzag, which calls for a unified, effective and
robust approach for classification.

In deep learning field, convolutional neural network (CNN) have achieved superior
performance in classification of image [8], video [6], text [7] and voice data [4]. In terms of
vector data, computer vision approaches have been designed to process point set data for
shape matching and classification [1, 11, 12, 13]. However, applying CNN for classification of
trajectory data is relatively unexplored, which confronts two challenges. Firstly, trajectory
data includes two additional pieces of information, namely the connectivity between points
and direction, which can be primary features in movement pattern classification. Secondly,
both the number of trajectories in a set and points in a trajectory can be variable. They
should be considered together with the variations in point positions.

To address the above two challenges, this paper proposes a deep learning approach for
classifying regional dominant movement pattern (RDMP), which is defined as the movement
pattern followed by the majority of a trajectory set within a target region. To achieve
this objective, the proposed approach defines a directional flow image (DFI) by mapping
a trajectory set to a grid space according to its extent and storing local directional flow in
multiple channels at each grid, i.e., the pixel of DFI. The benefit is that a trajectory set with
the aforementioned variations can be transformed into an image in fixed shape. Subsequently,
a CNN called TR-Net is designed for classification of DFI, which is trained on synthetic
trajectory data and a considerably high accuracy is achieved. In summary, the approach
adds a bridge between deep learning and trajectory pattern classification.

2 Methodology

2.1 RDMP category definition
Based on the commonly encountered movement patterns summarized in [3], this paper firstly
defines 10 RDMP categories as move straight, turn left, turn right, converge, diverge, cross,
reverse, zigzag, clockwise and counter-clockwise. Some examples are displayed in Figure 1.
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            Classification of RDMP in trajectories

C0-Move Straight C1-Turn left C2-Turn right C3-Converge C4-Diverge

C5-Cross C6-Reverse C7-Zigzag C8-Clockwise C9-Anti-Clockwise

Figure 1 Category definition of regional dominant movement pattern (category ID and name)
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(a) DFI of a single trajectory (b) DFI (25 × 25) of a trajectory set
Figure 2 Illustration of directional flow image.

These definitions are highly conceptual and fuzzy where variations in shapes, the number of
points and the number of trajectories are tolerated.

2.2 Directional flow image and TR-Net
A DFI is created from a trajectory set to store the local directional flow information. Given
a trajectory set, its extent can be firstly partitioned into a grid space G in shape of H ×W
indicating the number of grids in height and width. From G, a DFI is created as an image
with 9 channels where each pixel represents a grid g ∈ G. The shape of DFI is written as
9×H ×W . The channel Ci at grid g stores the number of traversals in the trajectory set
from g to its neighbouring grid indexed by Ci as illustrated in Figure 2(a). The 9 channels
cover the N8 neighbours and the grid itself, where C5 represents traversals to the grid itself
indicating the end of a trajectory.

When it comes to classification of DFI, the task is similar to the handwritten digit
recognition problem studied in [10] where a CNN called LeNet was designed. TR-Net adjusts

18



Yang and Gidófalvi

Fully 
connected 

layer

Trajectory 
set

Directional flow image
(9 x H x W)

Convolution layer 1 (20 
x 5 x 5) + max pooling 
(pool 2x2, stride 2x2)

Convolution layer 2 (50 
x 5 x 5) + max pooling 
(pool 2x2, stride 2x2)

9

H

W
20

50

H/2

W/2

H/4

W/4

Output layer
(softmax 

probability)

500

10

Figure 3 Architecture of TRNet

C0-Move Straight C1-Turn left C2-Turn right C3-Converge C4-Diverge C5-Cross C6-Reverse C7-Zigzag C8-Clockwise C9-Anti-Clockwise

Figure 4 Demonstration of some classification results using DFI size of 10 × 10

LeNet by replacing the first input layer as a 9× 10× 10 DFI. The detailed information is
shown in Figure 3. In this paper, TR-Net is implemented with Keras [2].

2.3 Synthetic training data generation

The synthetic training data generation is divided into two steps. In the first step, trajectory
seeds are drawn manually according to the definition of 10 categories, as shown in Figure 1.
Each seed is a set of trajectories following a specific RDMP. Different types of variations
in a trajectory set are considered including the number of points inside a trajectory, the
number of trajectories in a set and variations in shape. To reduce the complexity, all the
trajectory seeds are draw within a fixed area bounded by point (0,0) and (10,10) in the
Cartesian coordinate system. By setting a grid size of 1.0, the shape of DFI is thus fixed to
be 9× 10× 10. When applying TR-Net to other datasets, an adaptive grid size can be set
proportional to the extent of a trajectory set.

In the second step, data augmentation is performed by rotating the trajectory seeds. It
can be observed from Figure 1 that all the classes are invariant to rotation. In other words,
a group of trajectories rotated by angle α still belong to the same class. Given a specific α,
sample size can be increased by 360/α times. In this paper, 34 seeds are drawn manually for
each of the 10 classes and rotated by 20 degrees. Finally, 34× 10× 360/20 = 6120 trajectory
sets and DFIs are generated.

19



           Classification of RDMP in trajectories

3 Results and discussion

In training TR-Net, the 6120 DFIs generated from the synthetic trajectory sets are shuffled
and split into a validation dataset (60%) and a test dataset (40%). The accuracy on test
dataset increases from 20% to 90% after 9 epochs of training and finally arrives at 99.3%
after 20 epochs. Some results are displayed in Figure 4, which demonstrates the effectiveness
of the approach.

Several limitations of TR-Net are discussed below. In this paper, all the training data
are created within an extent of (10,10) and the shape of DFI is fixed to be 9 × 10 × 10.
The restriction primarily comes from the consideration that a conventional CNN generally
requires a fixed input layer in order to train the weights of fully-connected layer. Advanced
architecture such as spatial pyramid pooling layer [5] has been designed recently to eliminate
the constraint. Improving TR-Net along this direction will be planned as a future work.
In addition, the patterns currently classified are regional dominant, which implies that it
cannot discover a small area exhibiting a different pattern inside a regional dominant one.
Similarly, a common phenomenon is that a large trajectory set can exhibit multiple patterns
at different scales in space, which cannot be discovered by TR-Net. These problems may
be addressed with by introducing object detection approaches, which is also left as a future
work. Moreover, the performance of TR-Net will be further evaluated with different types of
real-world data.

4 Conclusion

The paper proposed a deep learning approach to discover regional dominant movement
patterns in a trajectory set. A directional flow image was firstly defined to store local
movement information of trajectories in a multi-spectral image. Subsequently, a convolution
neural network called TR-Net was designed for classifying that type of image. Experiments
on synthetic data demonstrated that the approach achieved a considerably high accuracy
that was robust to different types of variations in trajectories.
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Abstract
The importance of spatial data for the area of human-computer interaction is discussed in this
vision paper as well as how machine learning and spatial big data can be utilized for optimizing
and adapting the interaction modalities in outdoor spaces. This paper briefly introduces and tries
to connect previous work in order to highlight the vision towards a space adaptive personalized
system and list important research questions.

2012 ACM Subject Classification Human-centered computing

Keywords and phrases interactive systems, urban structures, human behavior

1 Introduction

We often use several types of digital devices in outdoor spaces, e.g., smartphones, tablets,
smartwatches, in order to interact with the surrounding environment [4] and other people
which are not necessarily co-located. Depending on several characteristics of our surroundings,
e.g., environmental complexity [5], type of space (e.g., dense urban area, open green field) as
well as our activity, e.g., interaction with a map [7], the interface of such a device could adapt
accordingly when we ask for it [6] in order to ease the interaction for the current situation.

Our vision is a personalized interactive system that is able to recognize the activity of its
user, the user’s cognitive load [1], the user’s familiarity with the surrounding environment as
well as the type of the environment and adapt accordingly.

2 Relevant Big Spatial Data

In order to come closer to the presented vision, several data sources are necessary for the
prediction of the relevant classes. In our current approach we utilize environmental data,
human behavior data as well as geo-spatial semantics1 [9]. The environmental data we utilize
are based on street networks, e.g., types of intersections [2] in the surroundings of the user,
the geo-spatial semantics of this area, or even the probability for certain routes from the
user’s current location [3]. Furthermore, we use eye tracking technology in order to track the
visual attention of the user [8], e.g., what is the user looking at, as well as location tracking in
order to record the user’s mobility patterns, aiming at understanding the underlying human
behavior.

All this data is tracked with different frequencies and the amount of data that has to be
analyzed at each relevant time instance varies according to the source. For instance, although
typical mobile eye tracking devices run with a frequency of 120 Hz, the size of data is very
lightweight compared with the tracked environmental data [2]. For instance, the types and
number of intersections in the spatial proximity of the user can be extracted and compared

1 http://linkedgeodata.org/About
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Figure 1 A hypothetical scenario of a user interacting with a digital system at a specific location.
The system adapts based on the users activity and the spatial characteristics in the local proximity
of the user, e.g., based on the spatial semantics and the surrounding urban structure.

with the same type of data of a larger relevant region in order to extract features for machine
learning. Figure 1 illustrates such an example.

Although the size and variety of the mentioned data sources is cumbersome to deal with,
the big challenge is to find existing and novel programming paradigms to deal with all these
different sources and decide for an efficient data fusion that would allow to come closer to
the presented vision.

3 Research Questions

Which types of urban classes (e.g., historic and touristic places) can we predict and what
type of data do we need?
Which land-cover classes can be of potential interest for adaptive interfaces?
What type of human behavior and spatial data are necessary in order to detect familiarity
with the surrounding environment?
Which classes of human spatial behavior should we be able to predict?

The above research questions are not complete by any means. These questions demonstrate
important aspects of the presented vision and highlight parts of the research we are currently
conducting in order to come closer to the presented vision.

4 Current and Future Challenges

Of course there are several challenges when presenting research which is based on predictions.
How good can these predictions be? How good do we need them to be? How much from
these big data do we actually need for good predictions? Can we be fast enough for real time
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applications? What is the elasticity between good predictions and real time application?
These are only a few of the important challenges that demonstrate the decision making
process that we have to go through when we have to cope with real time applications, the
size and variety of data.
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Abstract
The reading behavior on maps can strongly vary with factors such as background knowledge,
mental model, task or the visual design of a map. Therefore, in cartography, eye tracking
experiments have a long tradition to foster the visual attention. In this work-in-progress, we use
an unsupervised machine learning pipeline for clustering eye tracking data. In particular, we
focus on methods that help to validate and evaluate the clustering results since this is a common
issue of unsupervised machine learning. First results indicate that validation using the silhouette
score alone is a poor choice and should, for example, be accompanied by a visual validation using
t-distributed stochastic neighbor embedding (t-SNE).
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1 Introduction

Human factors such as background knowledge or mental model as well as the cartographic
design of a map have a strong impact on how people read and understand maps. Therefore,
eye tracking experiments have a long history in cartographic research (refer to [5] for an
overview). Answering where and how map readers spent their visual attention on a map is
crucial to evaluate its design and usability. However, due to the high data rates of up to 1500
Hz that are needed to track the quickest movements of the human eye, these experiments
usually result in large log files, which requires using automated data analysis.

There are many examples of the successful application of supervised machine learning
methods on eye tracking data. For instance, Kiefer et al. recognize six predefined map
activities based on gaze patterns [4]. However, the application of supervised learning methods
requires ground truth information. In cases where these are not available, unsupervised
learning techniques are an option to explore the data. An example is the work by Jonietz et
al. who used GPS trajectory data to search for user groups with similar changes in mobility
behavior [3].

This work evaluates the suitability of unsupervised machine learning methods for clustering
eye tracking data. In the following, we first propose a clustering framework and discuss each
of its steps with the help of real data from a prior eye tracking experiment. This allows
to exemplify the framework and test a wide-range of different hyperparameters. Finally,
the results are validated and evaluated by comparing the clustering results with t-SNE
visualization, before we draw a conclusion and give an outlook on future work.
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Figure 1 Overview of the clustering pipeline.

Table 1 Features used for clustering. Columns are interpreted as {statistic x indicator x type}.
For instance, the first column reads: “total duration of trial”.

statistics total
mean, variance, median, 95th percentile, 

5th percentile, total
total

rate of

mean, variance, 
weighted mean

covariance of variance of total

indicator duration of
distance between succeeding, duration, 

angle between succeeding
number of, changes of curvature 

of, changes of direction of
dispersion x of, 
dispersion y of

dispersion of duration on dwells on

type trial fixations City A, City B, Legend, Map

2 Framework for clustering Eye Tracking Data

The proposed framework provides a structured approach to test different options of data
preparation methods and clustering algorithms together with a wide-range of hyperparameters.
Figure 1 gives a general overview of the iterative pipeline of the framework.

In order to explore patterns in gaze behavior, we use the data from an experiment
published previously [2]. Participants performed a common comparison task on a map, which
involved interacting with the legend. Three different maps with varying symbol density and
three legend types were tested. In total, 18 samples were extracted for the clustering process.

2.1 Data Preparation
Because most clustering algorithms require tabular data, the pipeline start with a feature
extraction step. We manually create features, that are specially tailored to reflect the scan
pattern of a user’s gaze behavior. Table 1 gives an overview of the features which quantify
the spatio-temporal characteristics of the eye tracking data.

Feature extraction from time series data quickly leads to a high number of features: In our
case, we create 37 features, which is a high value regarding 18 samples. Therefore, we include
a feature selection step in our framework which filters features based on their dispersion. We
use the interquartile ratio as it is robust to outliers [3].

2.2 Clustering
The next step is the clustering itself. Our framework applies three common clustering
algorithms: KMeans, spectral clustering, and DBscan. KMeans is a simple and well-known
clustering algorithm, however, it can only represent convex clusters. To address the case of
non-convex clusters, we also apply spectral clustering. Furthermore, in this step, we test
DBscan, which is often used for GPS trajectory analysis and does not require the definition
of the number of clusters.

2.3 Validation
In general, unsupervised learning problems, such as clustering, are very hard to evaluate,
because of the missing ground truth information. Although, in our scenario, the clustering
algorithms produce a valid result for most hyperparameter configurations, the challenge to
identify meaningful results remains. We propose a two-step approach to evaluate resulting
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clustering configurations: At first, we apply internal clustering validation measures, namely
the silhouette score (SIL)[7] and the distribution of users per class (e.g. uniform distribution
of users over all classes vs. all but one user in the same class) to exclude meaningless or
trivial results. One disadvantage of the SIL is that it favors convex clusters, which might
not reflect the structure of the data. Therefore, we do not use the SIL1 for ranking but as a
threshold to filter the results.

In a second step, we evaluate the clustering results by visual inspection similar to [1].
A dimension reduction method projects high-dimensional data to a human readable two-
dimensional space. We chose t-distributed stochastic neighbor embedding (t-SNE), which
has been proven to be a powerful tool for the visualization of high-dimensional data [6, 8].
Although, t-SNE can unveil structure in the data the method can not be used as a quantitative
clustering algorithm, as it does not preserve distances [8].

In our framework, we use t-SNE to visualize structure in the data by projecting the
unlabeled, high-dimensional data into two dimensions. We then color the data points in the
resulting two-dimensional plot according to the clustering results. This allows to visually
evaluate if the clustering result corresponds to the result of the t-SNE projection. If both
results are corresponding, the clustering result is likely to be meaningful. If the results
are not in line, it is still possible that both algorithms have uncovered different meaningful
patterns but we can not validate our clustering result.

2.4 Example
We calculated all possible clustering results of the example dataset, by running the different
algorithms with a wide range of hyperparameters (comparable to an extensive grid search).
29700 parameter combinations were tested, which results in 9952 valid clusterings (a result is
valid if it has more than 1 cluster and if the algorithm converged). Following the framework,
results with a SIL below 0 were excluded and only the ones with an interesting distribution
of users among the different classes were manually picked. We then visualize the promising
picks using the t-SNE algorithm and color the data points according to the label of the
clustering result.

Figure 2a shows one single t-SNE projection colored with five different clustering results
(result with negative SIL is included for comparison). The graphs show that the solution with
the highest SIL (0.43) is a trivial solution where all points but one are in the same cluster.
Although the forth clustering has a rather low silhouette score, it looks very promising. This
might be an example of the inability of the SIL to acknowledge non-convex clusters.

Figure 2b shows the t-SNE label distribution of the forth clustering from Figure 2a
with different perplexity values. Due to the stochastic nature and the dependency on the
perplexity of the t-SNE, the position of a point and the distance between points varies greatly
between the different results. The graphs show that the results by the spectral clustering are
fairly robust and correspond well to the t-SNE projections with different hyperparameters.

3 Discussion and Conclusion

In this work, we proposed a framework for unsupervised clustering with a special focus on
the validation of the clustering results. The approach was exemplified with a data set of
an eye tracking experiment on cartographic maps. We showed that a validation based on

1 The SIL ranges between -1 and 1; values closer to 1 indicate well defined and separated clusters
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1 SpectralClustering,
2 clusters, affinity: rbf

2 KMeans,
6 clusters

3 SpectralClustering,
4 clusters, affinity: nn

4 SpectralClustering,
4 clusters, affinity: rbf

5 SpectralClustering,
4 clusters, affinity: rbf

(a) T-SNE graphs with a constant perplexity of 7. Colors indicate results of different clusterings.
Headers state the respective algorithms. The SIL is shown at the bottom right of each plot.

2  p = 21  p = 1 3  p = 3 4  p = 7 5  p = 10

(b) T-SNE graphs with varying perplexity (p). Coloring uses the same labels as in plot 4 from a).

the silhouette score alone can be misleading and should be accompanied by other validation
methods. Promising results could be achieved by visual inspection based on t-SNE. Although
we have demonstrated the framework with only very few data points, the approach is suited
for large-scale datasets. The main contribution of this work-in-progress is the introduction of
a technique to find a theoretically good solution in a structured way.

However, the question of how to finally choose the best clustering result is an ongoing
topic of discussion. Although we could demonstrate the potential of t-SNE for evaluation of
a clustering result, domain knowledge is crucial for both, choosing meaningful parameters
and extracting more elaborate features that describe the interaction of a human with a map
and the inspected map content in more detail.
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Abstract
The Web-accessible of large, global-coverage databases of Points of Interest (POI) as well as
social sensing techniques to study how humans behave towards these POI, i.e., when they visit
them, how they write about them, the sequences in which they visit these POI, and so forth, have
lead to researchers and companies utilizing POI to represent regions and their affordances. For
instance, one can characterize neighborhoods by the types of POI they contain as well as their
frequency or try to extract spatial footprints of functional regions based on the spatial patterns
in which these POI are distributed over geographic space. Such perspectives, however, ignore the
spaces and places in-between these POI as well as the transportation infrastructure that defines
many kinds of regions and their interaction. Consequently, it is often more beneficial to take a
step back and explicitly state that one considers collections of POIs to delineate an area, e.g., to
associate it with activity types such as tourism. To give a concrete example, the area enclosed by
the locations from which people are frequently taking pictures in a city such as New York may
be characterized as an area of interest (e.g., Time Square) to differentiate it from a merely point-
based perspective. Unfortunately, the community has not yet agreed on a common term for such
areas and instead uses similar terms from domains such as human geography or remote sensing
as proxies. While they often have overlapping meanings, we believe that it would be beneficial to
discuss the similarities and differences of terms such as neighborhood, functional region, vague
cognitive region, and so forth as compared to areas of interest and other POI collections.
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Spatial-temporal systems → Geographic information systems
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1 Introduction

Points of interest (POIs) refer to point locations in urban or rural environments that support
human activities or attract the attentions of people. POIs have been widely used in academic
research and industrial applications as a proxy to understand human activities in an area.
However, POIs are also criticized because they force the spatial footprints of geographic
features to be points, thereby essentially ignoring their extent. This geometric generalization
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works in many applications but can also cause problems especially at large cartographic
scales. In addition, it often makes sense to study collections of Points of Interest and their
spatial distribution. These collections necessarily cover an area and this area may be of
interest in various contexts such as reasoning about the activity spaces of people, delineating
regions frequented by tourists, estimating the boundaries of neighborhoods and functional
regions and so on. Such POI collections, however, can only act as proxy for the above
mentioned concepts and therefore it is often beneficial to talk about POI collections and
explain how they are used to derive further information. Recently, the term area of interest
(AOI) has been used [6, 5] to describe one kind of POI collections, namely areas that attract
and support various human interests and activities. At a first glance, AOI seems to be a
simple extension of POI by enabling polygon representations of spatial footprints. However,
POIs and AOIs do not have a one-to-one mapping relationship. For example, an AOI can
be defined as a concave polygon containing locations photographed by tourists. Another
example would be an AOI formed by all POI within a certain area that afford nightlife
activities. Clearly, while such an area is a worthwhile nit of study, it should not be confused
with concepts such as neighborhood.

AOI is also related to some other spatial concepts, and their distinctions are not always
clear. One of such concepts is administrative region which is often defined by governments
and used for various socioeconomic and political purposes. The well-defined semantics and
the clearly-delineated boundaries make it easy to distinguish one administrative region from
another. While administrative regions are defined in a top-down manner by authorities,
other spatial concepts have been proposed to represent geographic regions extracted in a
data-driven manner or from a community/culture-centered perspective. Examples include
(vague) neighborhoods [2], functional regions [3], and vague cognitive regions (VCR) [7]. Vague
cognitive regions, for instance, emphasize the cognitive aspect of places and reflect informal
ways people organize their knowledge about places and how they share common attitudes
towards them [7]. Functional regions focus on one or multiple functions provided by a specific
area and model the (often hierarchical) spatial interactions among the places within this
area. Neighborhoods are used to represent the structure and composition of the urban space
in social perspectives such that spatial units within the same neighborhood share a similar
character [1]. Neighborhoods also have a strong historical perspective as they often arise by
smaller communities being incorporated.

AOI is also a type of data-driven geographic regions [6, 5], and some similarities can be
found between AOI and other concepts. Similar to vague cognitive regions, AOIs exist in
people’s perception and have vague boundaries. Different AOIs may also support different
activities (e.g., recreational areas for entertainments and commercial centers for shopping
activities) and provide different functions similar to functional regions. The spatial units
within an AOI can also share similar attributes such as the concept of neighborhood (e.g.,
higher housing price for commercial centers). Another concept that is similar to AOI are
regions of interest (ROI) which is a term frequently used in remote sensing and other domains
to refer to the study regions defined by researchers. These similarities makes it difficult to
distinguish AOI from other concepts. An even more important question is whether AOI is a
trivial concept that can be simply replaced by other terms or whether it adds something
that cannot be expressed otherwise. This paper is intended to start a discussion around this
topic by reviewing the similarities and differences between AOI and related concepts.

30



Mai et. al.

2 Comparison of AOI and Related Concepts

In this section, we review AOI and related spatial concepts and discuss their similarities
and differences. Table 1 provides a comparative summary of concepts from six important
perspectives: 1) Consensus: are the semantics and spatial footprints of these concepts
commonly agreed among people? 2) Footprints: which type of geometry is typically used to
represent this concept? 3) Boundary: does this concept have a vague or crispy boundary?
4) Relatively static: is this extent of the region relatively static or does it change frequently
over time? 5) Spatial Interaction: is this concept defined based on the interactions among
the places within this area? 6) Named region: it naming a key aspect of this type of region?
While the concepts of POI and administrative region are also compared in the table, they are
not discussed in separate sections since they have clear distinction with AOI outlines before.

Table 1 A comparison among different spatial concepts. (Yes(Y)/No(N))

Consensus Footprints Boundary Relatively static Spatial Interaction Named Place
Administrative Region Semantics and footprints Polygons Crispy Y N Y
Point Of Interest Semantics and footprints Points - Y N Y
Vague Cognitive Region Semantics Polygons Vague Y N Y
Functional Region Applications dependent Polygons Crispy/Vague Y/N Y N
Neighborhood Applications dependent Polygons Crispy/Vague Y/N N Y/N
Region Of Interest Applications dependent Polygons Crispy - N N
Area Of Interest Applications dependent Polygons Vague N N N

2.1 Vague Cognitive Regions
While AOI is also a cognitive concept since the word "interest" can refer to various themes and
the same theme can be interpreted or perceived differently by different people, it embodies
less cognitive flavor compared with VCR [7]. VCRs are driven by individual and cultural
beliefs about thematic properties of geographic places. VCR as a term is strongly tied with
the intrinsic vagueness and fuzziness of many geographic concepts, such as "downtown Santa
Barbara" and "Southern California". Each VCR refers to a named cognitive geographic
region which is commonly agreed on by some part of the population whereas the vagueness
or disagreement arises when it comes to the regions spatial boundary. In contrast, since each
AOI it not necessarily associated with a name, AOIs are not formed by consensus or common
reference, let alone consensus on their spatial representations. Another distinction is that
VCRs are relatively static whereas people will be interested in different areas at different
times of the day which forms different AOIs. Note that terms such as activity spaces typically
refer to a single-persons perspective and are mostly defined by travel patterns.

2.2 Functional Regions
The concept of functional region has different definitions in the literature of regional science
and urban geography studies. One popular definition is that functional regions are usually
characterized by connections or spatial interactions between different areas and locational
entities. Another one is from Hartshorne [4] with emphasis on supporting the particular set
of activities and depending on the structure of the area. The functions of certain (sub)regions
are originally defined in urban planning and then reshaped by needs arising from human
activities. Researchers use POIs that afford specific types of human activities as a proxy to
delineate functional regions with various co-location patterns of place types from a bottom-up
perspective [3]. Because of the uncertainty in this bottom-up process, the boundaries of
functional regions can be also vague. The distinctive character of functional regions is that
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they focus on the (often hierarchical) spatial interactions between places within them and
different combinations of functions which are not captured by any other concepts (and cannot
be fully represented by collections of POI).

2.3 Neighborhoods
Neighborhood is a phrase frequently used in our everyday life. In most cases, administrative
units at the country, state, and city level are well defined, but sub-city level tends to be
where hard geospatial boundaries fall apart. Neighborhoods have become a common term
used to describe an urban region that shares a similar character. In this way they can be
considered areas of interest with specific focus on aspects of an urban setting that often
differentiate parts of a city. Features such as socioeconomic status, demographics, housing
prices, or even crime rate all play a role in how neighborhoods are perceived. There is a
deluge of work exploring this topic, with many researchers focusing on a combination of
characteristics as the basis for setting a boundary. For instance, work by Cranshaw et al. [2]
explored the use of social media check-ins for clustering Points Of Interest which they refer to
as livehoods. Neighborhood boundaries are a contentious issue in many parts of the world and
have been historically used for redlining or other means of separating groups of people. One
clear distinction between AOIs and neighborhoods it that the last mentioned captures the
general characters of certain range of space in a slowly evolving, cultural, and history-based
fashion, while AOIs are more similar to perspectives or views on space that highlight aspects
along one or a few dimension. Their cultural relevance stems from usage patterns (e.g.,
sightseeing), not the historical development of an urban area.

2.4 Regions Of Interest
Region of interest is a general concept for describing a subset of data that is under study
or serve some specific purposes. It is commonly used in domains such as medical imaging
and computer vision. In geography, ROI is used to analyze remotely sensed imagery, and
has been widely accepted as term in most commercial remote sensing software like ENVI.
Compared to other concepts, ROI is usually defined by researchers from a perspective of
data processing and analysis rather than conceptualization. Therefore, it is difficult and
sometimes meaningless to have a consensus on the identification of ROI. Furthermore, most
ROIs have crispy boundaries which makes them different from AOIs (which have rather vague
boundaries). Nonetheless, researchers that delineate a specific area based on a type of human
activity also define a region of interest, thereby showing similarities between the terms ROI
and AOI. Put differently, an AOI sits in between areas merely selected for the purpose of a
study, e.g., during sampling, and the shared experience of place associated with other terms
such as vague cognitive regions. To refer back to the tourism and photography example,
AOI can be defined by researchers based on geo-tagged images but are also experienced by
citizens seeing how places attract tourists and the activities associated with tourism.

2.5 Areas Of Interest
The concept of AOI has two major emphases: area and interest. The first emphasis suggests
that an AOI is geometrically represented as an area rather than a point. Based on this
emphasis, AOI can be considered as an extension of the concept of POI. Meanwhile, an AOI
is more than a collection of spatially co-located POIs. An AOI may also include regions that
do not have any POI in the classical (static) sense but simply provide a scenic view [5]. Thus,
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an AOI may also include the reversed viewshed of a POI. The second emphasis is on interest.
This emphasis adds a layer of human cognition: an AOI does not refer to any geographic
region but regions that can attract attention from people, e.g., by affording certain activities.
Thus, an AOI may be an attractive regions that contain landmarks, commercial centers,
and recreational areas as well as famous natural tourism resorts in a rural area, such as
nature parks and famous mountains. Given its cognitive emphasis, AOI can be subjective:
for a geographic region, different people may have different lists of AOI in mind due to their
different cultures, education backgrounds, and personal interests, and so forth. In addition,
agreement on the existence of an AOI does not mean agreement on their spatial extents nor
the need for a name. Clearly, a town may have a region that is often included in the routes
of bikers and runners without them sharing a name for this common path-fragment.

3 Conclusion

It is good scientific practice to question the necessity of a new concept. In this paper, we
looked into the question whether the concept of AOI can be simply replaced by other existing
spatial concepts. To do so, we compared the similarities and differences between AOI and
related concepts from six perspectives, namely consensus, footprint, boundary, dynamics,
spatial interaction, and name. Although some concepts like administrative region, ROI, and
POI have rather clear distinctions from AOI, it is easy to confuse AOI with other concepts
like VCR, functional regions, and neighborhoods, which are often extracted in a similar
data-driven manner by researchers interested in Big Data. We believe that AOI (and other
types of POI collections) is an unique concept which cannot be simply replaced by others,
most importantly because it may lead to an oversimplification or even misrepresentation of
other types of regions. AOI, for example, can be used as means of approximation of these
other concepts. AOIs do not necessarily have names (compared with VCR), do not necessarily
focus on spatial interactions (compared with functional regions), and have dynamic patterns
(compared with neighborhoods). We hope that this comparison can start a useful discussion
for future studies to select the most suitable term.
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Abstract
The spatial inequality in house prices between the UK regions has been extensively researched
in the existing literature, but the analysis at a sub-regional level is scarce. This working paper
presents an integrated spatio-temporal approach that allows for the examination of the changing
inequality in house prices at multiple spatial scales and over time simultaneously. By utilising
a large-scale non-aggregated spatial housing dataset in England during 2001-2014, this study
provides the most thorough and systematic spatiotemporal analysis of the changing patterns in
house prices in England.
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1 Background

The spatial inequality in house prices between the UK regions is usually characterised as the
North-South divide – lower in the former, higher in the latter [1-3]. This gap emerged in the
1970s, widened in the 1980s, and then somewhat reversed in the early 1990s. Until then, the
regional house price movements were approximately aligned with national house prices [4-5],
but since the mid-1990s some sub-housing markets in the country have become ‘de-coupled’
from the national market [6].

Apart from the wide regional price disparities, substantial price variations also started
to emerge within regions[7]. The existing literature on the house price variation, however,
commonly analysed the patterns cross-sectionally at one spatial scale at regional level, or
temporal trends at national level. Spatio-temporal patterns were commonly analysed by
applying the same cross-sectional methodology repeatedly at different time points.

The purpose of this study is to develop a new multi-scale spatio-temporal approach that
allows the consideration of varying temporal trends at multiple geographic scales and thus to
offer a thorough and systematic analysis of the changing patterns in house price differentials
between and within regions at multiple spatial scales for entire England.
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2 Data and Methodology

A complete list of historical house transactions (13.6 million) in England during 2001-2014
was obtained from the Land Registry of England and Wales. Multiple spatial scales were
investigated: region, Local Authority District (LAD), Middle- and lower-Super Output Areas
(MSOA and LSOA), and Output Areas(OAs). MSOAs, LSOAs and OAs are the UK census
geographies, which were designed to be socially homogeneous in terms of household numbers,
housing type and tenure.

An integrated model-based spatio-temporal approach was developed to investigate the
changing patterns at multiple scales over time. First, a fixed-effects approach[8] is employed
to examine housing price inequality at the regional level. Regions were modelled as having
fixed effects on house price by using dummy indicator representing each English region. A
five-level random-effects model incorporating varying temporal effects across multiple-scale
geographical areas were then developed to examine the changing geographical variations at
sub-regional level over time.

The sub-regional units under investigation have a strictly hierarchical structure, where
houses were nested within OAs, which, in turn were nested within LSOAs, MSOAs, and then
LADs. These units were specified as having random effects through a five-level random-effects
model with the level 1-5 units being houses, OAs, LSOAs, MSOAs and LADs, respectively.
The stochastic variations between houses at level-1 as well as the spatial variations at sub-
regional levels net of other levels and after removing regional differences can be examined
simultaneously through this modelling technique.

The potentially different temporal trajectories of places are explored by allowing the
effects of time to vary across space. This is achieved by allowing the coefficient of time
variables to vary randomly across the units at all five scales. This approach not only allows
the identification of the most marked spatial scale that accounts for price variation but also
allows the changing patterns of spatial variations in house prices to be modelled as a function
of time.

This spatio-temporal approach allows the investigation of temporal trends at each spatial
level and spatial variations of house price at multiple scales simultaneously. It also produces
more precise and robust estimations, which are shrunken towards the overall mean of the
next higher-level units[9].

3 Results

3.1 Trends in Regional Housing Markets

Substantial price differentials were found between the nine English regions. The variations in
the aggregated average house price between regions were three-fold in January 2001, dropped
to 2.6-fold in January 2008 and rose to four-fold in Dec 2014. The modelled mean house
prices at the regional level were presented in Figure 1. London was found to have seen major
and extensive increases over the period and pulled away from the rest of English regions.
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Figure 1 Modelled mean house price for each English region.
Note: SE=South East, East=East of England, SW=South West, WM=West Midlands,
EM=East Midlands, York=Yorkshire and Humber, NW=North West, NE=North East

3.2 Chaning Inequality in House Prices within Regions

The changing inequality in house prices at a sub-regional level is explored between the
LADs within regions, between MSOAs within the LADs, between LSOAs within MSOAs
and between OAs within LSOAs. The estimated variations in house prices at these four
scales were presented in two steps: without and with adjusting for housing stock attributes,
presented in Figure 2 and 3, respectively.

The overall changing patterns between the two graphs are broadly similar; controlling
for the housing stock characteristics simply further brings out the importance of geography,
particularly at the broad district or borough level in London and the East of England. The
between-LAD variations in London the largest amongst in all English regions and they have
risen sharply during the overall period, while the between-LAD variations in all the other
regions are comparatively much smaller. Geographies in London, especially at the macro
level, are much more important in house price determination than in any other regions and
become more so over time.
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Figure 2 Changing within-region price variations without adjusting for housing attributes.

Figure 3 Modelled mean house price for each English region.

4 Discussion and Conclusion

Many previous studies found that substantial house price disparities exist between regions,
and there is a clear North-South divide. The analyses at a sub-regional level, including
the changing patterns in house price disparities, are however under-researched. This study
presents a new spatio-temporal approach and applied it to historical individual house-level
transactional data in England over a 14-year period and the results suggest that the geography
of house prices is much more complex than a simple North-South divide.
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We have three major findings. First, house price disparities exist at multiple spatial
levels: at both regional and various sub-regional levels. Second, The regional price differences
narrowed during the first half of the study period but widened after the global financial
crisis in 2007/08. Third, the changing patterns of price variations within regions depend on
the region and spatial level concerned. At the LAD scale, spatial disparities have mostly
decreased. The magnitude of the disparities is substantial for some regions.

It was found that London is very different from the rest of English regions in many aspects.
Its spatial inequality is the largest compared to the rest. This inequality has also increased
substantially during the overall study period, irrespective of the level of the deprivation of
the place. At any given time in London, greater price variations exist between affluent areas
than deprived areas, while it is completely the opposite for other English regions. In addition,
urban houses do not appear to be more expensive than the urban ones, after adjusting for
the housing characteristics. This study also demonstrates the advantages of a random-effects
approach to analysing the changing effects of the spatial units at multiple scales on house
prices over time.
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1 Introduction

Location-based social media data are increasingly used to understand spatial and temporal
patterns of human activities in different environments. Mining of the continuous flow of
social media posts has the potential to provide up to date information about where, when
and how people use space [3]. Recent advances in the field of computer science such as
machine learning enable us to analyze these spatial big data in unprecedented volumes. Here,
we discuss the use of location-based social media data together with automated content
analysis techniques to support smart spatial planning in cities. In the presentation we focus
particularly on urban green areas, using parks of the Helsinki Metropolitan Region in Finland
as the study area.

2 Social media data on urban greens

Social media data has been used to study extensively the use of urban areas [13, 1, 10, 5]. In
national parks and other recreational sites, social media has been shown to work as a proxy
for visitation [16, 15], and as an indicator of people’s activities and preferences [7, 8] when
compared with official visitor information. In urban green areas, social media has also been
used as a proxy for park and trail use with mixed results [4, 6, 17].

3 Need for automated content analysis methods

Various different approached have been used to automatically analyze textual and image
content in social media data (Figure 1 and Figure 2), but machine learning techniques are
still rarely utilized in addressing environmental questions [3, 2]. Traditional data collection
methods such as surveys, activity diaries, GPS tracking to study the use of green areas
are costly and usually time consuming to implement, and thus social media analysis has
potential to support these efforts. However, most social media content analysis from green
areas have been based on manual work, which limits the extent and repeatability of the
analysis. Promising examples have shown that automated text content analysis [11] and
image content analysis [12] may help filtering content relevant to nature recreation. Also,
the combination of different modalities (such as image, text and emojis) can be utilized to
enhance the performance of deep-learning algorithms [14], as exemplified in our case study
from Helsinki.

4 Platforms vary in their data

Social media platforms differ in popularity and the type of content, and thus the choice
of platform(s) may affect greatly the analysis output. Different platforms provide varying
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spatial accuracies for geotagged data: Instagram posts are associated with the predefined
Facebook places, Flickr provides GPS coordinates and Twitter a combination of these. Users
also post different contents: Instagram is used for sharing momentary experiences, Flickr
more professional content on e.g. species and Twitter discussions on topical issues. Urban
social media studies are often based on Twitter or Foursquare, whereas environmental studies
have used most widely Flickr and Panoramio. Users also share content across platforms. For
example, a geotagged tweet might actually be an Instagram posts (in a sample dataset from
Helsinki, over 50 % of the geotagged tweets originated from Instagram). The way in which
users communicate in each platform (using text, emojis, image and video) should be taken
into account when designing and training classifiers [9].

Figure 1 Dense captioning allows verbalizing image content to natural language that can be
analyzed more easily.

5 Multimodal analysis (text + image) brings added value when
detecting activities

Our dataset from Helsinki contained 11 000 geotagged Instagram photos located within
regionally important green areas (all available data from 2015). The dataset was manually
annotated for the presence and absence of human activities (24 % of the data contained
an activity), and split to training, validation and testing samples for the automatic activ-
ity detection. Automatic activity detection was done separately for images and captions
(monomodal classification), and trough fusion of features extracted from images and captions
(multimodal classification). Images were analyzed using NasNet-L pre-trained on ImageNet,

41



V. Heikinheimo et al.

Figure 2 Identifying objects and people allow further analyses of what people have been imaging
(an example using MASK R-CNN)

and Captions were analyzed using fastText word embeddings trained on all available captions.
Our preliminary analysis shows that multimodal methods are most effective in identifying
activities automatically: automated detection of activities from the posts was most successful
when combining both the textual and image content. With text only, we reached F1 score of
0.71, with image only 0.76 and with their combination 0.84 [9].

Future work will include the comparison of content from different platforms, and further
analysis of the spatial activity patterns in urban green areas.
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Abstract15

Quantifying the response of crop yield to climate factors is important in agricultural systems.16

Many studies have worked on yield prediction through process-based simulation models and17

statistical models. Given the spatiotemporal explicit features of crop production, there exists a18

need to better understand the cumulative temporal effects of climate factors on crop production.19

To fill this gap, we build a Long Short-Term Memory (LSTM) model for weather-impacted corn20

yield prediction. The results show that LSTM model has a better performance (RMSE = 0.6121

Mg ha−1) in yield prediction than two other models: Lasso (RMSEP = 1.07 Mg ha−1) and RF22

(RMSE = 0.64 Mg ha−1) on the same test set. The results illustrate the potential of LSTM in23

crop yield prediction by considering the cumulative temporal impact of weather factors on crop24

yield.25

2012 ACM Subject Classification Spatio-temporal modeling in machine learning applications26

Keywords and phrases LSTM, Corn yield prediction, climate factors, cumulative temporal effect27

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.xx28

1 Introduction29

In 2015, FAO estimated that 795 million people live without an adequate food supply [3].30

With the increased global population, maintaining sustainable food supply becomes an31

international issue. How to improve crop productivity is critical to address food security.32

Accurate in-season yield prediction can support farmers to improve management and reduce33

yield loss caused by unfavorable weather conditions.34

Process-based biophysical modeling and statistical modeling [4] are two popular approaches35

to quantify corn yield based on climate factors. Biophysical modeling is more suitable for36

site-specific yield analysis, whereas statistical modeling is often adopted in large-scale spatial37

analysis. Some researches further look into the integration of process-based and statistical38

∗ corresponding author: Tao Lin, lintao1@zju.edu.cn.

© Haifeng Li, Yudi Wang, Renhai Zhong, Hao Jiang, Tao Lin;
licensed under Creative Commons License CC-BY

Spatial big data and machine learning in GIScience, Workshop at GIScience 2018.
Editors: Martin Raubal, Shaowen Wang, Mengyu Guo, David Jonietz and Peter Kiefer;

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

44

mailto:lihaifeng@csu.edu.cn
mailto:lintao1@zju.edu.cn
http://dx.doi.org/10.4230/LIPIcs.GIScience.2018.xx
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Long short-term memory networks for county-level corn yield estimation

modeling [6]. Under the rapid development of computing capabilities in recent years, artificial39

intelligence methods, such as Artificial Neural Network (ANN) [2] and Bayesian Network40

(BN) [5], have gradually been applied for agricultural yield prediction. These studies, however,41

often simply the temporal variations of yield-weather relationship and the cumulative effects42

of weather factors. In practice, not only the crop itself is growing over time, the impact43

of weather on the crop might also vary and accumulate throughout the growing season.44

Especially, the damage of extreme weather would possibly impose a long sequential impact45

on crop growth throughout the season. No remediations afterward can be applied to resolve46

the damage. There is a critical need, therefore, to integrate the cumulative effects of47

climate factors on crop production to better understand the interactions between crop and48

environmental factors.49

Long Short-Term Memory (LSTM) model is a deep neural network that has been successful50

in learning sequence and tree structures [7]. It facilitates time-series analysis and handles51

complexity and nonlinearity functions by its unique structure. LSTM was developed to deal52

with the gradient vanishing and exploding problems. Previous studies have demonstrated53

that LSTM has a good performance in dealing with long sequential data in natural language54

modelling [7] and human trajectory prediction [1]. We would like to evaluate the performance55

of LSTM modeling in capturing dynamic temporal yield-weather relationships and yield56

prediction.57

The objectives of this study are to: (i) develop a LSTM model to predict corn yield by58

cumulative climate factors; (ii) compare the prediction accuracy among LSTM, Random59

Forests (RF), and Lasso regression methods.60

2 Methodology61

2.1 Study Area and datasets62

This study focuses on rainfed corn yield in the central and northern 11 states in the U.S.63

from 1970 to 2016. These 11 states are: Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan,64

Minnesota, Missouri, Nebraska, Ohio and Wisconsin. The county-level non-irrigated corn65

yield data is from USDA’s National Agriculture Statistics Service [8]. To capture the impact66

of climate factors on corn yield, we calculate the detrend yield (yield influenced by climate67

factors) by linear regression of corn yield versus year as the predictable variable in the68

models. The daily county-level climate data is obtained from Applied Climate Information69

System (ACIS) Web Service [9]. The climate data used in this study include: maximum daily70

temperature (Tmax), minimum daily temperature (Tmin), and daily precipitation (PRCP).71

During the corn growth period (from week 20 to 39), weekly Tmax, Tmin and PRCP is72

calculated and transferred into sequential vectors as the input of LSTM model. In addition,73

Min-Max scaling is used to scale the input into a range from zero to one.74

2.2 Models75

The structure of LSTM model in this study includes four layers: input layer, hidden layers76

and output layer (Figure 1). The input is a time sequence X = {x1, x2, · · · , xT }, xt is a77

vector which includes climate factors.xt = [Tmaxt,Tmint,PRCPt], T is 20, the length of78

time sequence and t is the time, represent the week in corn growth period, from week 20 to79

39. The hidden layers are two LSTM layers composed of LSTM cells, in which information80

is selectively transported and stored. The output is detrend yield y calculated out by all81

input vectors in one time sequence of corn growth period, from week 20 to 39.82
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To make a comparison between LSTM and other models, we build a Lasso regression83

model (λ = 0.003) and a RF model as baselines. All three models are trained based on the84

same training set, which is randomly selected 80% of the total sample set. The remaining85

20% of the total sample set is used as the test set, where RMSE is used as the performance86

indicator of yield prediction accuracy.87

Figure 1 The structure of LSTM.

2.3 Results and Discussion88

We compare the accuracy of LSTM model with two typical models: RF and Lasso regression89

(Table 1). The results show that machine learning models, LSTM (RMSE = 0.61 Mg ha−1)90

and RF (RMSE = 0.64 Mg ha−1), outperform traditional linear regression model, Lasso91

(RMSE = 1.04 Mg ha−1) in yield prediction on the same test set. Compared to RF, LSTM has92

a less degree of overfitting and a slight improvement on prediction accuracy. The improved93

accuracy by the LSTM model is possibly due to its structure designed for capturing not94

only the direct impact at each time period but accumulated effect of weather on crop yield95

throughout the entire growing season. The degree of impact by weather may vary temporally96

as the requirement of water and nutrients by crop varies at different growing stages. In97

addition to the accumulated temporal impact, LSTM is more suitable to capture nonlinear98

impact of weather on crop, especially considering the extreme events such as heating and99

drought during the growth period.100

Model
RMSE

Training Set Test Set
(34868 obs) (8717 obs)

LSTM 0.53 0.61
RF 0.31 0.64

Lasso 1.07 1.04
Table 1 The RMSE of LSTM, RF and Lasso models.

To better understand the accumulated and nonlinear impact of climate factors on corn101
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yield, some future work are proposed: (i) evaluate the performance of in-season prediction;102

(ii) quantify the sensitivity of yield to climate factors in different corn growing stages by103

adding an Attention mechanism into the LSTM model; (iii) incorporate the spatial correlation104

features of the crop yield-weather relationship in the LSTM model.105

3 Conclusions106

We build a Long Short-Term Memory model to predict the county-level rainfed corn yield in107

response to climate factors for 11 states in the U.S. from 1970 to 2016. The results show108

that the LSTM model has a better prediction accuracy than traditional Lasso regression109

model. Compared to the RF, LSTM has a slightly better prediction accuracy and less degree110

of overfitting. The results demonstrate the potential of LSTM in crop yield prediction and111

temporal analysis of yield-weather interactions. The mechanism of how the LSTM model112

captures the cumulative temporal effect of climate factors on corn yield needs to be further113

studied.114
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Abstract
We investigate whether conditional generative adversarial networks (C-GANs) are suitable for
point cloud rendering. For this purpose, we created a dataset containing approximately 150, 000
renderings of point cloud image pairs. The dataset was recorded using our mobile mapping
system, with capture dates that spread across one year. By parameterizing the recording date,
we are showing that it is possible to predict realistically looking views for different seasons, from
the same input point cloud.

1998 ACM Subject Classification D.1.3 Concurrent Programming, I.2.6 Learning, I.2.10 Vision
and Scene Understanding, I.3.3 Picture/Image Generation, I.4.8 Scene Analysis.

Keywords and phrases Deep learning, MapReduce, GAN, image-to-image translation.

1 Introduction

Laser scanned point clouds are difficult to handle when it comes to photo-realistic rendering.
First, a camera calibration is needed in order to colorize each scanned point. However,
this does not guarantee that each 3d point is captured by a camera viewpoint. Secondly,
since point clouds are sparse, it is difficult to exclude occluded points, e.g. behind walls and
buildings. In order to create a continuous surface, splats can be drawn instead of points. A
splat is defined as elliptical surface with a size according to the local point density. Lastly,
the colorized point cloud does not contain any information about the sky and lighting.
Our approach tries to circumvent the whole process of model-based point cloud rendering,
by learning how a possible representation of the point cloud could look like in reality. Our
key contributions in this work are:

Predicting photo-realistic views from point clouds which are containing only (laser)
reflectance information.
Extending a C-GAN to parameterize different seasons and months in order to predict
multimodal images.

2 Related work

Conditional GANs attracted a lot of attention in recent years. Most notable are the
pix2pix network by Isola et al. [3] and the improved version pix2pixhd [10], which is able to
predict high resolution image-to-image mappings. Like traditional GANs, these networks are
using an adversarial loss which is learned by a discriminator network. In contrast to L1-loss,
the adversarial loss leads to less blurry images [3, 10] by learning to distinguish between real
and generated images. In addition to image-to-image translation, there exist a wide range
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of conditional GANs, such as unpaired image-to-image translation [14] and text-to-image
[2, 12, 7, 8].

Multimodal image-to-image translation defines the process of mapping one-to-many
images, by modeling distributions of possible outcomes with an additional latent space vector
or matrix, e.g. as used by BicycleGAN [15]. Other notable contributions are iGAN [13] and
Scribbler [9] which directly encode the information.

Depending on the application, point clouds are handled in different ways in order to
incorporate them into deep neural networks. They can be inferred as unordered 3d point sets
[5, 6], using voxels [11, 4], or projected into images in order to use traditional 2d-convolutional
networks [1].

3 Method

3.1 Preparing the dataset using MapReduce
To prepare a training dataset, we used mobile mapping data which was captured during 21
measurement campaigns, over the duration of one year. To illustrate the size of the problem,
the subset of the data we are using contains 15 billion (15, 017, 586, 980) 3d points and
123, 047 images. Each image capture is given in terms of position (in UTM coordinates) and
orientation (roll, pitch, yaw angles). Additionally, the intrinsic parameters of each camera
are known. The task is then to project each of the 15 billion 3d points to each of the 123, 047
images. To solve this task, we created a massively parallel point cloud renderer, using the
MapReduce framework on an Apache Hadoop cluster.

Figure 1 Our MapReduce approach for rendering large point clouds.

In order to apply MapReduce, each mapper has a list of all image orientations. According
to the MapReduce principle, it receives a subset (split) of 3d point coordinates and their
reflectance values (reflectance is an entity measured by the laser scanner). In order to reduce
the amount of points emitted by the mapper, we exclude points that are behind the camera
or are further away than 500 m. The mapper possibly emits multiple key-value pairs per
incoming 3d point, depending on the number of images the point appears in. The key is
defined by the image name, identifying a single image take, whereas the value contains
the distance, reflectance and the image coordinates of the point. Each reducer receives all
necessary information, grouped by image (key), and computes two 16-bit gray-value images
per key, one containing the distance and the other one containing the reflectance values per
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Figure 2 Our adapted generator network. Note how the capture date is injected by concatenating
a fully connected layer.

point. Depending on the scanning situation, the points appear more or less sparse on the
image plane.

3.2 C-GAN
Our approach is heavily inspired by the pix2pixhd network by Wang et al. [10]. The pix2pixhd
network incorporates instance segmentation information and label-maps in order to enable
object manipulation. By encoding the features of one instance, it is able to generate diverse
images from the same input.

We modified this generator network as follows. We removed the instance- and labels-maps
from the network architecture because we don’t have any information about the class or
instance of each point. We also reduced the number of generator networks to one {G} and the
number of multiscale discriminators to two {D1, D2}. However, the discriminator networks
have exactly the same architecture as defined by Wang et al. [10]. Each discriminator operates
on a different image scale, D1 at the original scale 512 × 512, and D2 at 256 × 256. We
adopted the LGAN part of the loss function as follows:

min
G

max
D1,D2

∑
k=1,2

LGAN (G,Dk) =
∑

k=1,2
E(x,y)[logDk(x, y)] +E[log(1−Dk(x,G(x, s)))]. (1)

The training dataset is given as a set of tuples of corresponding images and dates {(xi, si, yi)},
where xi is the input-/reflectance-image, yi is the real image, taken by a camera of our
mapping van, and si is the date the image was taken. In order to encode the capture date si,
we added a fully connected layer as latent vector of the generator network. Similar to the
findings of Zhu et al. [15], we also observed that noise fed additionally and directly into the
generator was completely ignored by the network. As shown in figure 2, the fully-connected
layer was instead concatenated to the bottleneck after convolving the input. The following
layers of the generator network are identical to the pix2pixhd network. We used a one-hot
encoding for each capture date si, as follows:

f(si) =
{

1 +N (µ, σ2), if si = date

0 +N (µ, σ2), otherwise.
(2)

In order to induce stochasticity, we added noise to each input, using µ = 0 and σ2 = 0.1.
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4 Results

We trained the Networks for 20 epochs with a batch size of 1. Figure 3 shows an example of
a predicted image. Remember that this is computed using only the reflectance and distance
information from the point cloud. Note that the predicted building is colored in a typical
color (white walls and red roof), while in reality, the building has quite different colors (red
walls and dark roof). We believe that the color information is thus mostly derived by the
spatial information and not by the (laser scanner) reflectance of the points themselves.

Figure 3 Input image (reflectance, left), synthesized image (middle) and real image (right).

Figure 4 shows that by shifting the value in the one-hot encoded season vector, we are
able to predict different seasons for the same laser scanner input. In this case, we used a
point cloud that was recorded in Germany in March and predicted an image for June and
December. However, we think that some features will stay encoded in the picture itself. For
example, the amount of leaves which are captured by the laser scanner directly. It is also
worth to mention that there are a large number of occluded points in the left pane of figure 4.
From the middle and right pane of figure 4, it can be seen that the generator has learned to
hide occluded points.

Figure 4 Summer (middle) and winter (right) representation of the same input point cloud (left).

In Figure 5 we are showing additional examples of synthesized images from the same
input but different season. We created also a video https://youtu.be/mQINboXOvRM which
shows the difference between summer and winter.
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Figure 5 Examples for different seasons with the same input per row.

5 Conclusion and outlook

In this work we have shown that it is possible to predict realistically looking images, using
only point cloud data. By parameterizing the different capture dates of the images and point
measurements, we were able to map the same point cloud to different seasons. We have
shown that the GAN was able to encode seasonal information like snow in winter or green
trees in summer. Furthermore, the generator was able to hide occluded points.

For future work we would like to test if this procedure is able to colorize point clouds
without using cameras. Provided that our point cloud is labelled, it is imaginable that this
framework allows us to project high precision labels to the generated images in order to
create or enrich data sets for semantic segmentation. Since our approach allows to define
arbitrary view positions and angles, this would enable us to generate an infinite amount of
training examples.
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