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Abstract
We investigate whether conditional generative adversarial networks (C-GANs) are suitable for
point cloud rendering. For this purpose, we created a dataset containing approximately 150, 000
renderings of point cloud image pairs. The dataset was recorded using our mobile mapping
system, with capture dates that spread across one year. By parameterizing the recording date,
we are showing that it is possible to predict realistically looking views for different seasons, from
the same input point cloud.

1998 ACM Subject Classification D.1.3 Concurrent Programming, I.2.6 Learning, I.2.10 Vision
and Scene Understanding, I.3.3 Picture/Image Generation, I.4.8 Scene Analysis.
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1 Introduction

Laser scanned point clouds are difficult to handle when it comes to photo-realistic rendering.
First, a camera calibration is needed in order to colorize each scanned point. However,
this does not guarantee that each 3d point is captured by a camera viewpoint. Secondly,
since point clouds are sparse, it is difficult to exclude occluded points, e.g. behind walls and
buildings. In order to create a continuous surface, splats can be drawn instead of points. A
splat is defined as elliptical surface with a size according to the local point density. Lastly,
the colorized point cloud does not contain any information about the sky and lighting.
Our approach tries to circumvent the whole process of model-based point cloud rendering,
by learning how a possible representation of the point cloud could look like in reality. Our
key contributions in this work are:

Predicting photo-realistic views from point clouds which are containing only (laser)
reflectance information.
Extending a C-GAN to parameterize different seasons and months in order to predict
multimodal images.

2 Related work

Conditional GANs attracted a lot of attention in recent years. Most notable are the
pix2pix network by Isola et al. [3] and the improved version pix2pixhd [10], which is able to
predict high resolution image-to-image mappings. Like traditional GANs, these networks are
using an adversarial loss which is learned by a discriminator network. In contrast to L1-loss,
the adversarial loss leads to less blurry images [3, 10] by learning to distinguish between real
and generated images. In addition to image-to-image translation, there exist a wide range
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of conditional GANs, such as unpaired image-to-image translation [14] and text-to-image
[2, 12, 7, 8].

Multimodal image-to-image translation defines the process of mapping one-to-many
images, by modeling distributions of possible outcomes with an additional latent space vector
or matrix, e.g. as used by BicycleGAN [15]. Other notable contributions are iGAN [13] and
Scribbler [9] which directly encode the information.

Depending on the application, point clouds are handled in different ways in order to
incorporate them into deep neural networks. They can be inferred as unordered 3d point sets
[5, 6], using voxels [11, 4], or projected into images in order to use traditional 2d-convolutional
networks [1].

3 Method

3.1 Preparing the dataset using MapReduce
To prepare a training dataset, we used mobile mapping data which was captured during 21
measurement campaigns, over the duration of one year. To illustrate the size of the problem,
the subset of the data we are using contains 15 billion (15, 017, 586, 980) 3d points and
123, 047 images. Each image capture is given in terms of position (in UTM coordinates) and
orientation (roll, pitch, yaw angles). Additionally, the intrinsic parameters of each camera
are known. The task is then to project each of the 15 billion 3d points to each of the 123, 047
images. To solve this task, we created a massively parallel point cloud renderer, using the
MapReduce framework on an Apache Hadoop cluster.

Figure 1 Our MapReduce approach for rendering large point clouds.

In order to apply MapReduce, each mapper has a list of all image orientations. According
to the MapReduce principle, it receives a subset (split) of 3d point coordinates and their
reflectance values (reflectance is an entity measured by the laser scanner). In order to reduce
the amount of points emitted by the mapper, we exclude points that are behind the camera
or are further away than 500 m. The mapper possibly emits multiple key-value pairs per
incoming 3d point, depending on the number of images the point appears in. The key is
defined by the image name, identifying a single image take, whereas the value contains
the distance, reflectance and the image coordinates of the point. Each reducer receives all
necessary information, grouped by image (key), and computes two 16-bit gray-value images
per key, one containing the distance and the other one containing the reflectance values per
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Figure 2 Our adapted generator network. Note how the capture date is injected by concatenating
a fully connected layer.

point. Depending on the scanning situation, the points appear more or less sparse on the
image plane.

3.2 C-GAN
Our approach is heavily inspired by the pix2pixhd network by Wang et al. [10]. The pix2pixhd
network incorporates instance segmentation information and label-maps in order to enable
object manipulation. By encoding the features of one instance, it is able to generate diverse
images from the same input.

We modified this generator network as follows. We removed the instance- and labels-maps
from the network architecture because we don’t have any information about the class or
instance of each point. We also reduced the number of generator networks to one {G} and the
number of multiscale discriminators to two {D1, D2}. However, the discriminator networks
have exactly the same architecture as defined by Wang et al. [10]. Each discriminator operates
on a different image scale, D1 at the original scale 512 × 512, and D2 at 256 × 256. We
adopted the LGAN part of the loss function as follows:

min
G

max
D1,D2

∑
k=1,2

LGAN (G,Dk) =
∑

k=1,2
E(x,y)[logDk(x, y)] +E[log(1−Dk(x,G(x, s)))]. (1)

The training dataset is given as a set of tuples of corresponding images and dates {(xi, si, yi)},
where xi is the input-/reflectance-image, yi is the real image, taken by a camera of our
mapping van, and si is the date the image was taken. In order to encode the capture date si,
we added a fully connected layer as latent vector of the generator network. Similar to the
findings of Zhu et al. [15], we also observed that noise fed additionally and directly into the
generator was completely ignored by the network. As shown in figure 2, the fully-connected
layer was instead concatenated to the bottleneck after convolving the input. The following
layers of the generator network are identical to the pix2pixhd network. We used a one-hot
encoding for each capture date si, as follows:

f(si) =
{

1 +N (µ, σ2), if si = date

0 +N (µ, σ2), otherwise.
(2)

In order to induce stochasticity, we added noise to each input, using µ = 0 and σ2 = 0.1.
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4 Results

We trained the Networks for 20 epochs with a batch size of 1. Figure 3 shows an example of
a predicted image. Remember that this is computed using only the reflectance and distance
information from the point cloud. Note that the predicted building is colored in a typical
color (white walls and red roof), while in reality, the building has quite different colors (red
walls and dark roof). We believe that the color information is thus mostly derived by the
spatial information and not by the (laser scanner) reflectance of the points themselves.

Figure 3 Input image (reflectance, left), synthesized image (middle) and real image (right).

Figure 4 shows that by shifting the value in the one-hot encoded season vector, we are
able to predict different seasons for the same laser scanner input. In this case, we used a
point cloud that was recorded in Germany in March and predicted an image for June and
December. However, we think that some features will stay encoded in the picture itself. For
example, the amount of leaves which are captured by the laser scanner directly. It is also
worth to mention that there are a large number of occluded points in the left pane of figure 4.
From the middle and right pane of figure 4, it can be seen that the generator has learned to
hide occluded points.

Figure 4 Summer (middle) and winter (right) representation of the same input point cloud (left).

In Figure 5 we are showing additional examples of synthesized images from the same
input but different season. We created also a video https://youtu.be/mQINboXOvRM which
shows the difference between summer and winter.
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Figure 5 Examples for different seasons with the same input per row.

5 Conclusion and outlook

In this work we have shown that it is possible to predict realistically looking images, using
only point cloud data. By parameterizing the different capture dates of the images and point
measurements, we were able to map the same point cloud to different seasons. We have
shown that the GAN was able to encode seasonal information like snow in winter or green
trees in summer. Furthermore, the generator was able to hide occluded points.

For future work we would like to test if this procedure is able to colorize point clouds
without using cameras. Provided that our point cloud is labelled, it is imaginable that this
framework allows us to project high precision labels to the generated images in order to
create or enrich data sets for semantic segmentation. Since our approach allows to define
arbitrary view positions and angles, this would enable us to generate an infinite amount of
training examples.
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