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Abstract15

Quantifying the response of crop yield to climate factors is important in agricultural systems.16

Many studies have worked on yield prediction through process-based simulation models and17

statistical models. Given the spatiotemporal explicit features of crop production, there exists a18

need to better understand the cumulative temporal effects of climate factors on crop production.19

To fill this gap, we build a Long Short-Term Memory (LSTM) model for weather-impacted corn20

yield prediction. The results show that LSTM model has a better performance (RMSE = 0.6121

Mg ha−1) in yield prediction than two other models: Lasso (RMSEP = 1.07 Mg ha−1) and RF22

(RMSE = 0.64 Mg ha−1) on the same test set. The results illustrate the potential of LSTM in23

crop yield prediction by considering the cumulative temporal impact of weather factors on crop24

yield.25
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1 Introduction29

In 2015, FAO estimated that 795 million people live without an adequate food supply [3].30

With the increased global population, maintaining sustainable food supply becomes an31

international issue. How to improve crop productivity is critical to address food security.32

Accurate in-season yield prediction can support farmers to improve management and reduce33

yield loss caused by unfavorable weather conditions.34

Process-based biophysical modeling and statistical modeling [4] are two popular approaches35

to quantify corn yield based on climate factors. Biophysical modeling is more suitable for36

site-specific yield analysis, whereas statistical modeling is often adopted in large-scale spatial37

analysis. Some researches further look into the integration of process-based and statistical38
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modeling [6]. Under the rapid development of computing capabilities in recent years, artificial39

intelligence methods, such as Artificial Neural Network (ANN) [2] and Bayesian Network40

(BN) [5], have gradually been applied for agricultural yield prediction. These studies, however,41

often simply the temporal variations of yield-weather relationship and the cumulative effects42

of weather factors. In practice, not only the crop itself is growing over time, the impact43

of weather on the crop might also vary and accumulate throughout the growing season.44

Especially, the damage of extreme weather would possibly impose a long sequential impact45

on crop growth throughout the season. No remediations afterward can be applied to resolve46

the damage. There is a critical need, therefore, to integrate the cumulative effects of47

climate factors on crop production to better understand the interactions between crop and48

environmental factors.49

Long Short-Term Memory (LSTM) model is a deep neural network that has been successful50

in learning sequence and tree structures [7]. It facilitates time-series analysis and handles51

complexity and nonlinearity functions by its unique structure. LSTM was developed to deal52

with the gradient vanishing and exploding problems. Previous studies have demonstrated53

that LSTM has a good performance in dealing with long sequential data in natural language54

modelling [7] and human trajectory prediction [1]. We would like to evaluate the performance55

of LSTM modeling in capturing dynamic temporal yield-weather relationships and yield56

prediction.57

The objectives of this study are to: (i) develop a LSTM model to predict corn yield by58

cumulative climate factors; (ii) compare the prediction accuracy among LSTM, Random59

Forests (RF), and Lasso regression methods.60

2 Methodology61

2.1 Study Area and datasets62

This study focuses on rainfed corn yield in the central and northern 11 states in the U.S.63

from 1970 to 2016. These 11 states are: Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan,64

Minnesota, Missouri, Nebraska, Ohio and Wisconsin. The county-level non-irrigated corn65

yield data is from USDA’s National Agriculture Statistics Service [8]. To capture the impact66

of climate factors on corn yield, we calculate the detrend yield (yield influenced by climate67

factors) by linear regression of corn yield versus year as the predictable variable in the68

models. The daily county-level climate data is obtained from Applied Climate Information69

System (ACIS) Web Service [9]. The climate data used in this study include: maximum daily70

temperature (Tmax), minimum daily temperature (Tmin), and daily precipitation (PRCP).71

During the corn growth period (from week 20 to 39), weekly Tmax, Tmin and PRCP is72

calculated and transferred into sequential vectors as the input of LSTM model. In addition,73

Min-Max scaling is used to scale the input into a range from zero to one.74

2.2 Models75

The structure of LSTM model in this study includes four layers: input layer, hidden layers76

and output layer (Figure 1). The input is a time sequence X = {x1, x2, · · · , xT }, xt is a77

vector which includes climate factors.xt = [Tmaxt,Tmint,PRCPt], T is 20, the length of78

time sequence and t is the time, represent the week in corn growth period, from week 20 to79

39. The hidden layers are two LSTM layers composed of LSTM cells, in which information80

is selectively transported and stored. The output is detrend yield y calculated out by all81

input vectors in one time sequence of corn growth period, from week 20 to 39.82
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To make a comparison between LSTM and other models, we build a Lasso regression83

model (λ = 0.003) and a RF model as baselines. All three models are trained based on the84

same training set, which is randomly selected 80% of the total sample set. The remaining85

20% of the total sample set is used as the test set, where RMSE is used as the performance86

indicator of yield prediction accuracy.87

Figure 1 The structure of LSTM.

2.3 Results and Discussion88

We compare the accuracy of LSTM model with two typical models: RF and Lasso regression89

(Table 1). The results show that machine learning models, LSTM (RMSE = 0.61 Mg ha−1)90

and RF (RMSE = 0.64 Mg ha−1), outperform traditional linear regression model, Lasso91

(RMSE = 1.04 Mg ha−1) in yield prediction on the same test set. Compared to RF, LSTM has92

a less degree of overfitting and a slight improvement on prediction accuracy. The improved93

accuracy by the LSTM model is possibly due to its structure designed for capturing not94

only the direct impact at each time period but accumulated effect of weather on crop yield95

throughout the entire growing season. The degree of impact by weather may vary temporally96

as the requirement of water and nutrients by crop varies at different growing stages. In97

addition to the accumulated temporal impact, LSTM is more suitable to capture nonlinear98

impact of weather on crop, especially considering the extreme events such as heating and99

drought during the growth period.100

Model
RMSE

Training Set Test Set
(34868 obs) (8717 obs)

LSTM 0.53 0.61
RF 0.31 0.64

Lasso 1.07 1.04
Table 1 The RMSE of LSTM, RF and Lasso models.

To better understand the accumulated and nonlinear impact of climate factors on corn101
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yield, some future work are proposed: (i) evaluate the performance of in-season prediction;102

(ii) quantify the sensitivity of yield to climate factors in different corn growing stages by103

adding an Attention mechanism into the LSTM model; (iii) incorporate the spatial correlation104

features of the crop yield-weather relationship in the LSTM model.105

3 Conclusions106

We build a Long Short-Term Memory model to predict the county-level rainfed corn yield in107

response to climate factors for 11 states in the U.S. from 1970 to 2016. The results show108

that the LSTM model has a better prediction accuracy than traditional Lasso regression109

model. Compared to the RF, LSTM has a slightly better prediction accuracy and less degree110

of overfitting. The results demonstrate the potential of LSTM in crop yield prediction and111

temporal analysis of yield-weather interactions. The mechanism of how the LSTM model112

captures the cumulative temporal effect of climate factors on corn yield needs to be further113

studied.114
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