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1 Introduction

Location-based social media data are increasingly used to understand spatial and temporal
patterns of human activities in different environments. Mining of the continuous flow of
social media posts has the potential to provide up to date information about where, when
and how people use space [3]. Recent advances in the field of computer science such as
machine learning enable us to analyze these spatial big data in unprecedented volumes. Here,
we discuss the use of location-based social media data together with automated content
analysis techniques to support smart spatial planning in cities. In the presentation we focus
particularly on urban green areas, using parks of the Helsinki Metropolitan Region in Finland
as the study area.

2 Social media data on urban greens

Social media data has been used to study extensively the use of urban areas [13, 1, 10, 5]. In
national parks and other recreational sites, social media has been shown to work as a proxy
for visitation [16, 15], and as an indicator of people’s activities and preferences [7, 8] when
compared with official visitor information. In urban green areas, social media has also been
used as a proxy for park and trail use with mixed results [4, 6, 17].

3 Need for automated content analysis methods

Various different approached have been used to automatically analyze textual and image
content in social media data (Figure 1 and Figure 2), but machine learning techniques are
still rarely utilized in addressing environmental questions [3, 2]. Traditional data collection
methods such as surveys, activity diaries, GPS tracking to study the use of green areas
are costly and usually time consuming to implement, and thus social media analysis has
potential to support these efforts. However, most social media content analysis from green
areas have been based on manual work, which limits the extent and repeatability of the
analysis. Promising examples have shown that automated text content analysis [11] and
image content analysis [12] may help filtering content relevant to nature recreation. Also,
the combination of different modalities (such as image, text and emojis) can be utilized to
enhance the performance of deep-learning algorithms [14], as exemplified in our case study
from Helsinki.

4 Platforms vary in their data

Social media platforms differ in popularity and the type of content, and thus the choice
of platform(s) may affect greatly the analysis output. Different platforms provide varying
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spatial accuracies for geotagged data: Instagram posts are associated with the predefined
Facebook places, Flickr provides GPS coordinates and Twitter a combination of these. Users
also post different contents: Instagram is used for sharing momentary experiences, Flickr
more professional content on e.g. species and Twitter discussions on topical issues. Urban
social media studies are often based on Twitter or Foursquare, whereas environmental studies
have used most widely Flickr and Panoramio. Users also share content across platforms. For
example, a geotagged tweet might actually be an Instagram posts (in a sample dataset from
Helsinki, over 50 % of the geotagged tweets originated from Instagram). The way in which
users communicate in each platform (using text, emojis, image and video) should be taken
into account when designing and training classifiers [9].

Figure 1 Dense captioning allows verbalizing image content to natural language that can be
analyzed more easily.

5 Multimodal analysis (text + image) brings added value when
detecting activities

Our dataset from Helsinki contained 11 000 geotagged Instagram photos located within
regionally important green areas (all available data from 2015). The dataset was manually
annotated for the presence and absence of human activities (24 % of the data contained
an activity), and split to training, validation and testing samples for the automatic activ-
ity detection. Automatic activity detection was done separately for images and captions
(monomodal classification), and trough fusion of features extracted from images and captions
(multimodal classification). Images were analyzed using NasNet-L pre-trained on ImageNet,
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Figure 2 Identifying objects and people allow further analyses of what people have been imaging
(an example using MASK R-CNN)

and Captions were analyzed using fastText word embeddings trained on all available captions.
Our preliminary analysis shows that multimodal methods are most effective in identifying
activities automatically: automated detection of activities from the posts was most successful
when combining both the textual and image content. With text only, we reached F1 score of
0.71, with image only 0.76 and with their combination 0.84 [9].

Future work will include the comparison of content from different platforms, and further
analysis of the spatial activity patterns in urban green areas.
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